Geomicrobiology of Impact-Altered Rocks

  • Charles S. Cockell
  • David A. Fike
  • Gordon R. Osinski
  • Pascal Lee
Part of the Impact Studies book series (IMPACTSTUD)


Rocks shocked by asteroid or comet impact events can be made more porous by the shock volatilization of minerals, and they can be fractured by the intense heat and pressures of impact. New spaces within the rock provide access points and surfaces for the growth of microbial communities, illustrating an example of how shock metamorphism can generate new habitats for microbial colonization. We review data on the colonization of shocked gneiss from the Haughton impact structure by phototrophs and heterotrophs. Shocked rocks can preferentially trap water and protect against wind-induced desiccation. The interior of shocked rocks is often warmer than the air temperature, and protects against ultraviolet radiation. Because impact events are a ubiquitous process on solid planetary surfaces, the shocked-rock habitat may be important on other planets, and it may have been important on the early Earth when primitive microorganisms lived under a much higher impact flux than today.


Photosynthetically Active Radiation Impact Crater Microbial Colonization Impact Structure Natural Environmental Research Council 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bouchard MA (1989) L’histoire naturelle du Cratere du Nouveau-Quebec. Collection Environment et géologie, 7. Départment de géologie, Université de Montréal, 420 ppGoogle Scholar
  2. Büdel B, and Wessels DCJ, 1991 Rock inhabiting blue-green algae/cyanobacteria from hot arid regions. Algological Studies 64: 385–398Google Scholar
  3. Cabrol NA, Grin EA (1995) A morphological view on potential niches for exobiology on Mars. Planetary and Space Sciences 43: 179–188CrossRefGoogle Scholar
  4. Chyba CF, Owen, IP, Ip WH (1994) Impact delivery of volatiles and organic molecules to Earth. In: Gehrels (ed) Hazards due to comets and asteroids, University of Arizona Press, Arizona, pp 9–58Google Scholar
  5. Cockell CS, Horneck G (2001) The history of the UV radiation climate of the Earth — Theoretical and space-based observations. Photochemistry and Photobiology 73: 447–451CrossRefGoogle Scholar
  6. Cockell CS, Lee P, Hildalgo L, Schuerger A, Stokes D, Jones J (2001) Microbiology and vegetation of micro-oases and polar desert, Haughton Impact Crater, Devon Island, Nunavut, Canada. Arctic, Alpine and Antarctic Research 33: 306–318CrossRefGoogle Scholar
  7. Cockell CS, Lee P, Osinski G, Horneck G, Broady P (2002) Impact-induced microbial endolithic habitats. Meteoritics and Planetary Sciences 37: 1287–1298Google Scholar
  8. Cockell CS, McKay CP, Omelon C (2003a) Polar endoliths — an anticorrelation of climatic extremes and microbial biodiversity. International Journal of Astrobiology 1: 305–310CrossRefGoogle Scholar
  9. Cockell CS, Osinski G, Lee P (2003b) The impact crater as a habitat — effects of impact processing of target materials. Astrobiology 3: 181–191CrossRefGoogle Scholar
  10. Cremer H, Wagner B (2003) The diatom flora in the ultra-oligotrophic Lake El’gygytgyn, Chukotka. Polar Biology 26: 105–114Google Scholar
  11. Ehling-Shulz M, Bilger W, Scherer S (1997) UV-B-induced synthesis of photo-protective pigments and extracellular polysaccharides in the terrestrial cyanobacterium Nostoc commune. Journal of Bacteriology 179: 1940–1945Google Scholar
  12. Fike DA, Cockell CS, Pearce D, Lee P (2003) Heterotrophic microbial colonization of the interior of impact-shocked rocks from Haughton impact structure, Devon Island, Nunavut, Canadian High Arctic. International Journal of Astrobiology 1: 311–323CrossRefGoogle Scholar
  13. Friedmann EI (1977) Microorganisms in antarctic desert rocks from dry valleys and Dufek Massif. Antarctic Journal of the United States XII: 26–30Google Scholar
  14. Friedmann EI (1980) Endolithic microbial life in hot and cold deserts. Origins of Life and Evolution of the Biosphere 10: 223–235CrossRefGoogle Scholar
  15. Frisch T, Thorsteinsson R (1978) Haughton astrobleme: a mid-Cenozoic impact crater Devon Island, Canadian Arctic Archipelago. Arctic 31: 108–124Google Scholar
  16. Garcia-Pichel F, Sherry ND, Castenholz RW (1992) Evidence for an ultraviolet sunscreen role of the extracellular pigment scytonemin in the terrestrial cyanobacterium Chlorogloeopsis sp. Photochemistry and Photobiology 56: 17–23Google Scholar
  17. Gibson RL, Reimold WU (2001) The Vredefort impact structure, South Africa. Memoir 92, Council for Geoscience, Geological Survey of South Africa, Pretoria. 111 ppGoogle Scholar
  18. Golubic S, Friedmann I, Schneider J (1981) The lithobiontic ecological niche, with special reference to microorganisms. Journal of Sedimentary Petrology 51: 475–478Google Scholar
  19. Gronlund T, Lortie G, Guilbault JP, Bouchard MA, Saanisto M (1990) Diatoms and arcellaceans from Lac du Cratere du Nouveau-Quebec, Ungava, Quebec, Canada. Canadian Journal of Botany 68: 1187–1200CrossRefGoogle Scholar
  20. Horneck G, Rettberg P, Rabbow E, Strauch W, Seckmeyer G, Facius R, Reitz G, Strauch K, Schott JU (1996) Biological UV dosimetry of solar radiation for different simulated ozone column thicknesses. Journal of Photochemistry and Photobiology B: Biology 32: 189–196CrossRefGoogle Scholar
  21. Jessberger EK (1988) 40Ar-39Ar dating of the Haughton impact structure. Meteoritics 23: 233–234Google Scholar
  22. Littler MM, Littler DS, Blair SM, Norris JN (1986) Deep-water plant communities from an uncharted seamount off San Salvador Island, Bahamas: distribution, abundance and primary production. Deep-Sea Research 33: 881–892CrossRefGoogle Scholar
  23. McCarville P, Crossey LJ (1996) Post-impact hydrothermal alteration of the Manson impact structure. In: Koeberl C, Anderson RR (eds) The Manson Impact Structure, Iowa: Anatomy of an Impact Crater, Geological Society of America Special Paper 302, Denver, Colorado, USA, pp 347–376Google Scholar
  24. McKay CP, Davis WL (1991) The duration of liquid water habitats on Mars. Icarus 90: 214–221CrossRefGoogle Scholar
  25. McKay CP, Friedmann EI (1985) The cryptoendolithic microbial environment in the Antarctic cold desert: temperature variations in nature. Polar Biology 4: 19–25CrossRefGoogle Scholar
  26. Melosh H J (1989) Impact cratering. A geologic process. Oxford University Press, 245 ppGoogle Scholar
  27. Metzler A, Ostertag R, Redeker HJ, Stöffler D (1988) Composition of the crystalline basement and shock metamorphism of crystalline and sedimentary target rocks at the Haughton Impact Crater, Devon Island, Canada. Meteoritics 23: 197–207Google Scholar
  28. Newsom HE (1980) Hydrothermal alteration of impact melt sheets with implications for Mars. Icarus 44: 207–216CrossRefGoogle Scholar
  29. Newsom HE, Graup G, Sewards T, Keil K (1986) Fluidization and hydrothermal alteration of the suevite deposit at the Ries crater, West Germany, and implications for Mars. Journal of Geophysical Research 91: E239–E251CrossRefGoogle Scholar
  30. Newsom HE, Brittelle GE, Hibbitts CA, Crosse LJ, Kudo AM (1996) Impact crater-lakes on Mars. Journal of Geophysical Research 101: 14,951–14,955CrossRefGoogle Scholar
  31. Nienow JA, McKay CP, Friedmann EI (1988) The cryptoendolithic microbial environment in the Ross Desert of Antarctica: light in the photosynthetically active region. Microbial Ecology 16: 271–289CrossRefGoogle Scholar
  32. Osinski GR, Spray JG, Lee P (2001) Impact-induced hydrothermal activity within the Haughton impact structure, arctic Canada: generation of a transient, warm, wet oasis. Meteoritics and Planetary Sciences 36: 731–745Google Scholar
  33. Osinski GR, Spray JG (2001) Impact-generated carbonate melts: evidence from the Haughton structure, Canada. Earth and Planetary Science Letters 194: 17–29CrossRefGoogle Scholar
  34. Quesada A, Vincent WF, Lean DRS (1999) Community and pigment structure of arctic cyanobacterial assemblages: the occurrence and distribution of UV-absorbing compounds. FEMS Microbial Ecology 28: 315–323Google Scholar
  35. Rathbun JA, Squyres SW (2002) Hydrothermal systems associated with Martian impact craters. Icarus 157: 362–372CrossRefGoogle Scholar
  36. Raven JA, Kübler JE, Beardall J (2000) Put out the light, and then put out the light. Journal of the Marine Biology Association of the UK 80: 1–25CrossRefGoogle Scholar
  37. Redeker HJ, Stöffler D (1988). The allochthonous polymict breccia layer of the Haughton impact crater, Devon Island, Canada. Meteoritics 23: 185–196Google Scholar
  38. Schoeman FR, Ashton PJ (1982) The diatom flora of the Pretoria Salt Pan, Transvaal, Republic of South Africa. Bacillaria 5: 63–99Google Scholar
  39. Scott DH, Rice JW, Dohm JM (1991) Martian paleolakes and waterways: exobiological implications. Origins of Life and Evolution of the Biosphere 21: 189–198CrossRefGoogle Scholar
  40. Svoboda J, Freedman B (1981) Ecology of a high arctic lowland oasis Alexandra Fiord (78°53′N, 75°55′W), Ellesmere Island, NWT, Canada. University of Toronta, Department of Botany, Toronto, Canada. 268 pGoogle Scholar
  41. Tang EPY, Vincent WF (1999) Strategies of thermal adaptation by high latitude cyanobacteria. New Phytologist 142: 315–323CrossRefGoogle Scholar
  42. Walker BD, Peters TW (1977) Soils of the Truelove lowland and plateau. In: Bliss LC (ed) Truelove Lowland, Devon Island, Canada: A high arctic ecosystem. Edmonton: University of Alberta Press, pp 31–62Google Scholar
  43. Wierzchos J, Ascaso C, Sancho LG, and Green A (2003) Iron-rich diagenetic minerals are biomarkers of microbial activity in antarctic rocks. Geomicrobiology Journal 20: 15–24CrossRefGoogle Scholar
  44. Zurcher L, Kring DA (2004) Post-impact hydrothermal alteration in the Yaxcopoil-1 hole, Chicxulub impact structure, Mexico. Meteoritics and Planetary Science 39: 1199–1221CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Charles S. Cockell
    • 1
  • David A. Fike
    • 2
  • Gordon R. Osinski
    • 3
  • Pascal Lee
    • 4
  1. 1.Open UniversityMilton KeynesUK
  2. 2.Department of Earth, Atmospheric and Planetary SciencesMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.Planetary and Space Sciences Center, Department of GeologyUniversity of New BrunswickFredrictonCanada
  4. 4.NASA Ames Research CenterMoffett FieldUSA

Personalised recommendations