Advertisement

Kärdla Impact (Hiiumaa Island, Estonia) — Ejecta Blanket and Environmental Disturbances

  • Sten Suuroja
  • Kalle Suuroja
Part of the Impact Studies book series (IMPACTSTUD)

Abstract

The Kärdla impact occurred at ca. 455 Ma (Upper-Ordovician, Caradoc) in a shallow (ca. 100 m) epicontinental sea not far (ca. 100 km) from the erosion area on the Baltic Shield (Grahn et al. 1996). The explosion of the meteorite ca. 200 m in diameter generated a complex crater 4 km wide and more than 500 m deep on the sea bed. The crater is surrounded by elliptical ring fault, up to 15 km in diameter, within which the sedimentary target rocks are strongly deformed. The ejected matter was spread almost concentrically around the crater, within a 50-km-radius, on ca 5500 km2. The ejected matter is found also farther away as an admixture in limestones. Most of the ejecta blanket was covered by limy mud immediately after the impact. The crater was buried somewhat later; therefore the ejecta blanket is well preserved, except the rim wall area. Rate of accumulation of deposits and its facial composition in the crater deep, rim wall area and surroundings was different during some millions of years.

The ejecta blanket lies in a succession of Upper-Ordovician carbonate rocks as a 0.01–3.5 m thick southward inclined (from 40 m b.s.l. [below sea level] in the island’s northernmost point up to 190 m b.s.l. in the southernmost point) bed of silty and sandy limestones or limy silt- and sandstones. On the sea bed about 10 km northward of the island the ejecta blanket is cut by the erosion escarpment (Baltic Klint). The distal ejecta layer consists mostly of silt- to gravel-sized debris of the target rocks (mostly Cambrian siliciclastic and Paleoproterozoic metamorphic rocks). In the lower part of the bed and closer to the impact centre coarser clasts occur. Farther from the impact site, the thickness of the ejecta layer, as well as the size of the grains decreases. The size of the ejected matter decreases also from the bottom towards the top of the layer. The ejected matter contains up to 1 vol% shock metamorphosed quartz grains with PDFs. The Kärdla impact was too small to cause substantial and long-term global environmental changes and catastrophic shifts in the biosphere. Its long-term effect was restricted mostly to changes in sea bed relief and related facial changes, as well as the changes in the biotic communities of pelagic organisms caused by the latter.

Keywords

Natural Bitumen Insoluble Residue Baltic Shield Impact Crater Environmental Disturbance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abels A, Zumsprekel H, Bischoff L (2000) Basic remote sensing signatures of large, deeply eroded impact structures. In: Gilmour, Koeberl C (eds), Impacts and the Early Earth, Springer Verlag, Berlin Heidelberg, Lecture Notes in Earth Sciences 91: 309–326Google Scholar
  2. Abels A, Plado J, Pesonen LJ (2003) The Impact Cratering Record of Fennoscandia — A close look at the database. In: Plado J, Pesonen, L (eds) Impacts in Precambrian Shields, Impact Studies vol. 2, Springer Verlag, Berlin Heidelberg pp 1–58Google Scholar
  3. Ainsaar L, Suuroja K, Semidor M (2002) Long-term effect of the Kärdla crater (Hiiumaa, Estonia) on Late Ordovician carbonate sedimentation. Deep-Sea Research, Part II 49/6: 1145–1155CrossRefGoogle Scholar
  4. Artemieva N (2002) Tektite origin in oblique impacts: numerical modelling of the initial stage. In: Plado J, Pesonen LJ (eds) Impacts in Precambrian Shields. Impact Studies vol. 2, Springer Verlag, Berlin Heidelberg, pp 257–276Google Scholar
  5. Cowie JW, Bassett MG (1989) Global stratigraphic chart with geochronometric and magnetostratigraphic calibration. Episodes 12(2), Supplement.Google Scholar
  6. Dence M (2002) Re-examining structural data from impact craters on the Canadian Shield in the light of theoretical models. In: Plado J, Pesonen LJ (eds) Impacts in Precambrian Shields, Impact Studies vol. 2, Springer Verlag, Berlin Heidelberg, pp 59–79Google Scholar
  7. Deutsch A, Langenhorst F (1994) Geological formations in and around impact structures. In: Marfunin AS (ed), Mineral Matter in Space, Mantle, Ocean Floor, Biosphere, Environmental Management, and Jewelry, Springer Verlag, Berlin, pp 89–95Google Scholar
  8. Deutsch A, Schärer U (1994) Dating terrestrial impact events. Meteoritics 29: 301–322Google Scholar
  9. Gilmour I, Koeberl C (eds) (2000) Impacts and the Early Earth. Lecture Notes in Earth Sciences, Vol. 91, Springer Verlag, Berlin-Heidelberg, 455 ppGoogle Scholar
  10. Grahn Y, Nõlvak J, Paris F (1996) Precise chitinozoan dating of Ordovician impact events in Baltoscandia. Journal of Micropalaeontology 15: 21–25CrossRefGoogle Scholar
  11. Gurov EP, Gurova EP, Sokur TM (2002) Geology and Petrography of the Zapadnaya impact crater in the Ukrainian Shield. In: Plado J, Pesonen LJ (eds) Impacts in Precambrian Shields, Impact Studies vol. 2, Springer Verlag, Berlin Heidelberg, pp 117–171Google Scholar
  12. Gurov EP, Kelley SP, Koeberl C (2003) Ejecta of the Boltysh impact crater in the Ukrainian Shield. In: Koeberl C, Martinez-Ruiz F (eds) Impact Markers in the Stratigraphic Record, Impact Studies vol. 3, Springer Verlag, Berlin Heidelberg, pp 179–202Google Scholar
  13. Hints L (1997) Haljala Stage. In: Raukas A, Teedumäe A (eds) Geology and mineral resources of Estonia. Estonian Academy Publishers, Tallinn, 73–74Google Scholar
  14. Jaanusson V (1995) Confacies differentiation and upper Middle Ordovician correlation in the Baltoscandian Basin. Proceedings of the Estonian Academy of Sciences, Geology 44: 73–86Google Scholar
  15. Kala E, Kajak K, Kajak H, Elterman G (1971) Report of the integrated geological mapping of Island Hiiumaa at a scale of 1:200 000 (in Russian). Geological Survey of Estonia, KeilaGoogle Scholar
  16. Kala E, Suuroja K, Tassa V (1976) Report of the prospecting granitic rock of Paluküla (in Russian). Geological Survey of Estonia, Tallinn, 94 ppGoogle Scholar
  17. Kattai V, Lokk U, Suuroja K (1994) The distribution of natural bitumens in Estonia. Bulletin of the Geological Survey of Estonia 4/1: 12–16Google Scholar
  18. King DT, Petruny LW (2003) Application of stratigraphic nomenclature to terrestrial impact-derived and impact related materials. In: Koeberl C, Martinez-Ruiz F (eds) Impact Markers in the Stratigraphic Record, Impact Studies v. 3, Springer Verlag, Berlin Heidelberg, pp 41–64Google Scholar
  19. Koeberl C (2001) The sedimentary record of impact events. In: Peucker-Ehrenbrinck B, Schmitz B (eds) Accretion of Extraterrestrial Matter throughout Earth’s History. Kluwer Academic/Plenum Publishers, pp 333–378Google Scholar
  20. Koeberl C, Anderson RR (1996) Manson and company: Impact structures in the United States. In: Koeberl C, Anderson RR (eds) The Manson Impact Structure, Iowa, Anatomy of an Impact Crater, Geological Society of America, Special Paper 302: 1–29Google Scholar
  21. Koeberl C, MacLeod K (eds) (2002) Catastrophic Events and Mass Extinction: Impacts and Beyond. Geological Society of America, Special Paper 356, 746 ppGoogle Scholar
  22. Koeberl C, Martinez-Ruiz F (2003) The Stratigraphic Record of Impact Events: A Short Overview. In: Koeberl C, Martinez-Ruiz F (eds) Impact Markers in the Stratigraphic Record, Impact Studies v. 3, Springer, Berlin-Heidelberg, pp 1–40Google Scholar
  23. Lindström M, Floden T, Puura V, Suuroja K (1992) The Kärdla, Tvären and Lockne craters — possible evidences of an Ordovician asteroid swarm. Proceedings of the Estonian Academy of Sciences, Geology 41: 45–53Google Scholar
  24. Lindström M, Sturkell EFF, Törnberg R, Ormö J (1996) The marine impact crater at Lockne, central Sweden. GFF 118: 193–206Google Scholar
  25. Männil R (1966) Evolution of the Baltic Basin during the Ordovician (in Estonian with English summary). Valgus, Tallinn, 248 ppGoogle Scholar
  26. Masaitis, VL (1999) Impact structures of northern Eurasia: The territories of Russia and adjacent counties. Meteoritics and Planetary Science 34: 691–711Google Scholar
  27. Masaitis VL (2002) The middle Devonian Kaluga impact crater (Russia): new interpretations of the marine setting. Deep-Sea Research. Part II 49: 1157–1169CrossRefGoogle Scholar
  28. Masaitis VL, Danilin AN, Maschak MS, Raykhlin AI, Selivanovskaya TV, Shadenkov E (1980) Geology of the astroblemes (in Russian), Nedra Press, Leningrad, 231 ppGoogle Scholar
  29. McGetchin TR, Settle M, Head JW (1973) Radial thickness variation in impact crater ejecta: Implications for lunar basin deposits. Earth and Planetary Science Letters 20: 226–236CrossRefGoogle Scholar
  30. Melosh H J (1989) Impact Cratering. A Geologic Process, Oxford University Press, 245 ppGoogle Scholar
  31. Nestor H, Einasto R (1997) Ordovician and Silurian sedimentation basin. In: Raukas A, Teedumäe A (eds) Geology and mineral resources of Estonia. Estonian Academy Publishers, Tallinn, 192–204Google Scholar
  32. Oberbeck VR (1975) The role of ballistic erosion and sedimentation in lunar stratigraphy. Reviews of Geophysics and Space Physics 13: 337–362Google Scholar
  33. O’Keefe JD, Ahrens TJ (1977) Meteorite impact ejecta: Dependence of mass and energy loss on planetary escape velocity. Science 198: 1249–1251Google Scholar
  34. Ormö J, Lindström M (2000) When cosmic impact strikes the sea bed. Geological Magazine 137: 67–80CrossRefGoogle Scholar
  35. Plado J, Pesonen LJ, Elo S, Puura, V, Suuroja K (1996) Geophysical research on the Kärdla impact structure, Hiiumaa Island, Estonia. Meteoritics and Planetary Science 31: 289–298Google Scholar
  36. Puura V, Floden T (1997) The Baltic Sea drainage basin — a model of a Cenozoic morphostructure reflecting the early Precambrian crustal pattern. Sveriges geologiska undersökning 86: 131–137Google Scholar
  37. Puura V, Suuroja K (1992) Ordovician impact crater at Kärdla, Hiiumaa Island, Estonia. Tectonophysics 216: 143–156CrossRefGoogle Scholar
  38. Põlma L (1982) Comparable lithology of the Ordovician carbonatic rocks of the North and Central Baltic (In Russian). Valgus, Tallinn 152 ppGoogle Scholar
  39. Remane J. (2000) International Stratigraphic Chart. International Union of Geological Sciences.Google Scholar
  40. Remane J, Bassett MG, Cowie JW, Gohrbandt KH, Lane HR, Michelson O, Wang N (1996) Revised guidelines for the establishment of global chronostrati-graphic standards by the International Commission on Stratigraphy (ICS). Episodes 19: 77–81Google Scholar
  41. Salvador A (ed) (1994) International Stratigraphic Guide: A guide to stratigraphic classification, terminology, and procedure. Second edition. International Union of Geological Sciences (IUGS) and Geological Society of America and (GSA), 214 p.Google Scholar
  42. Shuvalov (2003) Displacement of Target Material During Impact Cratering. In: Koeberl C, Martinez-Ruiz F (eds) Impact Markers in the Stratigraphic Record, Impact Studies vol. 3, Springer, Berlin-Heidelberg, pp 121–135Google Scholar
  43. Stöffler D, Grieve RAF (1996) Classification and nomenclature of impact metamorphic rocks: a proposal to the IUGS Subcommission on the Systematic of Metamorphic Rocks. Lunar and Planetary Science [abs.] 25: 1347–1348Google Scholar
  44. Stöffler D, Langenhorst, F (1994) Shock metamorphism of quartz in nature and experiment: I. Basic observation and theory. Meteoritics 29: 155–181Google Scholar
  45. Stöffler D, Gault DE, Wedekin J, Polkovski G (1975) Experimental hypervelocity impact into quartz sand: Distribution and shock metamorphism of ejecta. Journal of Geophysical Research 80: 4062–4077CrossRefGoogle Scholar
  46. Sturkell E, Ormö J, Nõlvak J, Wallin Å (2000) Distant ejecta from the Lockne marine-target impact crater, Sweden. Meteoritics and Planetary Science 35: 929–936.CrossRefGoogle Scholar
  47. Suuroja K (2001) Kärdla Meteorite Crater. Geological Survey of Estonia, Tallinn, 38 ppGoogle Scholar
  48. Suuroja K (2002) Natural resources of the Kärdla impact structure, Hiiumaa Island, Estonia. In: Plado J, Pesonen, L (eds) Impacts in Precambrian Shields, Impact Studies v.2, Springer Verlag, Berlin-Heidelberg, pp 295–306Google Scholar
  49. Suuroja, K., Suuroja, S. (2000). Neugrund Structure — the newly discovered submarine early Cambrian impact crater. In: Gilmour I, Koeberl C (eds) Impacts and the Early Earth. Springer Verlag, Berlin-Heidelberg. Lecture Notes in Earth Sciences, Vol. 91: 389–416Google Scholar
  50. Suuroja K, Kadastik E, Mardim T (1994) The geological mapping of Island of Hiiumaa at a scale of 1:50 000. Six maps with explanatory note (in Estonian with English summary). Geological Survey of Estonia, Keila, 206 ppGoogle Scholar
  51. Suuroja K, Koppelmaa H, Niin M, Kivisilla J (1991) Geological mapping of the crystalline basement on Island of Hiiumaa at a scale of 1:200 000. Two maps with explanatory note (in Russian). Geological Survey of Estonia, Keila, 291 ppGoogle Scholar
  52. Suuroja K, Suuroja S, All T, Floden T (2001) Kärdla (Hiiumaa Island, Estonia) — the buried and well-preserved Ordovician marine impact structure. Deep-Sea Research Part II 46/2: 1121–1144Google Scholar
  53. Suuroja S, All T, Plado J, Suuroja K (2002) Geology and magnetic signatures of the Neugrund impact structure, Estonia. In: Plado J, Pesonen, L (eds) Impacts in Precambrian Shields, Impact Studies vol. 2, Springer Verlag, Berlin Heidelberg, pp 277–294Google Scholar
  54. Suuroja K, Kirsimäe K, Ainsaar L, Kohv M, Mahaney W, Suuroja S (2003) The Osmussaar breccia in northwestern Estonia — evidence of ca 475 Ma Earthquake or an Impact? In: Koeberl C, Martinez-Ruiz F (eds) Impact Markers in the Stratigraphic Record, Impact Studies vol. 3, Springer, Berlin-Heidelberg, pp 333–347Google Scholar
  55. Tammekann A (1940) The Baltic Glint. I. Morphography of the Glint. Publicationes Instituti Universitatis Tartuensis Geographici 24: 104 ppGoogle Scholar
  56. Valter A, Plotnikova L (2003) Biostratigraphic indications of the age of the Boltysh impact crater, Ukraine. In: Koeberl C, Martinez-Ruiz F (eds) Impact Markers in the Stratigraphic Record, Impact Studies vol. 3, Springer Verlag, Berlin-Heidelberg, pp 163–178Google Scholar
  57. Viiding H, Kala E, Pobul E (1969) The mystery of Paluküla find solution (in Estonian with English summary). Eesti Loodus 8: 464–474Google Scholar
  58. Webby BD (1998) Steps toward a global standard for Ordovician stratigraphy. Newsletter of Stratigraphy 36: 1–33Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Sten Suuroja
    • 1
    • 2
  • Kalle Suuroja
    • 1
  1. 1.Geological Survey of EstoniaTallinnEstonia
  2. 2.Department of MiningTallinn Technical UniversityTallinnEstonia

Personalised recommendations