The Potential for Survival of Organic Matter in Fluid Inclusions at Impact Sites

  • John Parnell
  • Martin Baron
  • Helen Wycherley
Part of the Impact Studies book series (IMPACTSTUD)


Fluid inclusions within rocks have potential for the preservation of organic molecules. Trace quantities of biomolecules could be entrapped inside micrometer-scale inclusions during the growth of surface precipitates, reflecting any ambient life in the surrounding waters. Developing technologies for the high-resolution detection of biomolecules offer encouragement for the future detection of these trace biomolecules. The terrestrial geological record shows that organic molecules can survive relatively high temperatures within inclusions, including the temperatures of hydrothermal systems in impact craters.


Fluid Inclusion Organic Geochemistry Impact Crater Impact Site Fluid Inclusion Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersen T, Burke EAJ (1996) Methane inclusions in shocked quartz from the Gardnos impact breccia, South Norway. European Journal of Mineralogy 8: 927–936Google Scholar
  2. Bada JL, Wang XS, Poinar HN, Paabo S, Poinar GO (1994) Amino acid racemization in amber-entombed insects: implications for DNA preservation. Geochimica et Cosmochimica Acta 58: 3131–3135CrossRefGoogle Scholar
  3. Bada JL, Wang XS, Hamilton H (1999) Preservation of key biomolecules in the fossil record: current knowledge and future challenges. Philosophical Transactions of the Royal Society of London, Series B 354: 77–87CrossRefGoogle Scholar
  4. Beegle LW, Kanik I, Matz L, Hill HH (2001) Electrospray ionization high-resolution ion mobility spectrometry for the detection of organic compounds, 1. Amino acids. Analytical Chemistry 73: 3028–3031CrossRefGoogle Scholar
  5. Bodnar RJ, Zolensky ME (2000) Fluid inclusions in meteorites: Are they useful and why are they so hard to find? Meteoritics and Planetary Science 35: A29Google Scholar
  6. Boer RH, Reimold WU, Koeberl C, Kesler SE (1996) Fluid inclusion studies on drill core samples from the Manson impact crater: Evidence for post-impact hydrothermal activity. In: Koeberl C, Anderson RR (eds) The Manson Impact Structure, Iowa: Anatomy of an Impact Crater. Geological Society of America Special Paper 302: 377–382Google Scholar
  7. Bray CJ, Spooner ETC, Thomas AV (1991) Fluid inclusion volatile analysis by heated crushing, on-line gas chromatography; applications to Archean fluids. Journal of Geochemical Exploration 42: 167–193CrossRefGoogle Scholar
  8. Bridges JC, Grady MM (2000a) Evaporite mineral assemblages in the nakhlite (martian) meteorites. Earth and Planetary Science Letters 176: 267–279CrossRefGoogle Scholar
  9. Bridges JC, Grady MM (2000b) Petrography and fluid inclusion studies of Zag. [abs.] Meteoritics and Planetary Sciences 35: A33Google Scholar
  10. Briones C, Parro V, Perez-Mercader J (2002) Development of microarray assays for biomarker identification in astrobiology. International Journal of Astrobiology 1: 115–116Google Scholar
  11. Brocks JJ, Logan GA, Buick R, Summons RE (1999) Archean molecular fossils and the early rise of eukaryotes. Science 285: 1033–103CrossRefGoogle Scholar
  12. Brocks JJ, Buick R, Summons RE, Logan GA (2003) A reconstruction of Archean biological diversity based on molecular fossils from the 2.78 to 2.45 billion-year-old Mount Bruce Supergroup, Hamersley Basin, Western Australia. Geochimica et Cosmochimica Acta 67: 4321–4355CrossRefGoogle Scholar
  13. Cabane M, Coll P, Rodier C, Israel G, Raulin F, Sterberg R, Niemann H, Mahaffy P, Jambon A, Rannou P (2001) In situ organic and inorganic analysis (Pyr/CD-GC/MS) of the Martian soil, on the 2005 mission. Planetary and Space Science 49: 523–531CrossRefGoogle Scholar
  14. De Jong EW, Westbroek P, Westbroek JF, Bruning JW (1974) Preservation of antigenic properties in macromolecules over 70 million years old. Nature 252: 63–64CrossRefGoogle Scholar
  15. Denner E, McGenity T, Busse H-J, Wanner G, Stan-Lotter H (1994) Halococcus salifedinae sp. nov., an archael isolate from an Austrian salt mine. International Journal of Systematic Bacteriology 44: 774–780CrossRefGoogle Scholar
  16. Dennis PF, Rowe PJ, Atkinson TC (2001) The recovery and isotopic measurement of water from fluid inclusions in speleothems. Geochimica et Cosmochimica Acta 65: 871–884CrossRefGoogle Scholar
  17. Dickensheets DL, Wynn-Williams DD, Edwards HGM, Schoen C, Crowder C, Newton EM (2000) A novel miniature Confocal microscope/Raman spectrometer system for biomolecular analysis on future Mars missions after Antarctic trials. Journal of Raman Spectroscopy 31: 633–635CrossRefGoogle Scholar
  18. Dombrowski HJ (1963) Bacteria from Palaeozoic salt deposits. Annals of the New York Academy of Sciences 108: 453–460Google Scholar
  19. Drennan GR, Boiron M-C, Cathelineau M, Rob LJ (1999) Characteristics of post-depositional fluids in the Witwatersrand Basin. Mineralogy and Petrology 66: 83–109CrossRefGoogle Scholar
  20. Dutkiewicz A, Rasmussen B, Buick R (1998) Oil preserved in fluid inclusions in Archaean sandstones. Nature 395: 885–887CrossRefGoogle Scholar
  21. Edwards HGM, Farwell DW, Grady MM, Wynn-Williams DD, Wright IP (1999) Comparative Raman microscopy of a Martian meteorite and Antarctic lithic analogues. Planetary and Space Science 47: 353–362CrossRefGoogle Scholar
  22. Ellery A, Kolb C, Lammer H, Parnell J, Edwards H, Richter L, Patel M, Romstedt J, Dickensheets D, Steele A, Cockell C (2002) Astrobiological instrumentation for Mars — the only way is down. International Journal of Astrobiology 1: 365–380CrossRefGoogle Scholar
  23. Etminan H, Hoffmann CF (1989) Biomarkers in fluid inclusions: A new tool in constraining source regimes and its implications for the genesis of Mississippi Valley-type deposits. Geology 17: 19–22CrossRefGoogle Scholar
  24. Fish SA, Shepherd TJ, McGenity TJ, Grant WD (2002) Recovery of 16S ribosomal RNA gene fragments from ancient halite. Nature 417: 432–436CrossRefGoogle Scholar
  25. Freemantle M (1999) Downsizing chemistry: Chemical analysis and synthesis on microchips promise a variety of potential benefits. Chemical and Engineering News 77(8): 27–36Google Scholar
  26. Gibson G (2002) Microarrays in ecology and evolution: a preview. Molecular Ecology 11: 17–24CrossRefGoogle Scholar
  27. Goldstein RH, Reynolds TJ (1994) Systematics of Fluid Inclusions in Diagenetic Minerals. Society of Economic Paleontologists and Mineralogists Short Course 31: 199ppGoogle Scholar
  28. Grant WD, Gemmell RT, McGenity TJ (1998) Halobacteria: the evidence for longevity. Extremophiles 2: 279–287CrossRefGoogle Scholar
  29. Grantham PJ (1986) Sterane isomerization and moretane/hopane ratios in crude oils derived from Tertiary source rocks. Organic Geochemistry 9: 293–304CrossRefGoogle Scholar
  30. Hansen AJ, Willersley E, Mørk S, Hedegaard MM, Rønn R, Jeffares DC (2002) JAWS: Just add water system — A device for detection of nucleic acids in Martian ice caps. Proceedings of the Second European Workshop on Exo/Astrobiology. European Space Agency Special Publication 518: 309–312Google Scholar
  31. Henry OYF, Piletsky S, Grant WD, Sims WD, Cullen DC (2002) Robust molecular imprinted polymer thin-films for an astrobiology biomimetic sensor array. Proceedings of the Second European Workshop on Exo/Astrobiology. European Space Agency Special Publication 518: 513–514Google Scholar
  32. Hoffmann CF, Henley RW, Higgins NC, Solomon M, Summons RE (1988) Biogenic hydrocarbons in fluid inclusions from the Aberfoyle tin-tungsten deposit, Tasmania, Australia. Chemical Geology 70: 287–299CrossRefGoogle Scholar
  33. Hunt JM (1996) Petroleum Geochemistry and Geology (2nd edition). W.H. Freeman and Company, New York, 743ppGoogle Scholar
  34. Kanik I, Johnson PV, Beegle LW, Cooks RG, Laughlin BC, Hill HH (2003) Electrospray ionization/ion mobility spectrometer/cylindrical ion trap mass spectrometer system for in-situ detection of organic compounds. Lunar and Planetary Science XXXIV, abstract 1292 (CD-ROM)Google Scholar
  35. Kazahaya K, Matsuo S (1985) A new ball-milling method for extraction of fluid inclusions from minerals. Geochemical Journal 19: 45–54Google Scholar
  36. Keir R, Igata E, Arundell M, Smith WE, Graham D, McHugh C, Cooper JM (2002) SERRS. In situ substrate formation and improved detection using microfluidics. Analytical Chemistry 74: 1503–1508CrossRefGoogle Scholar
  37. Koeberl C, Fredriksson K, Götzinger M, Reimold WU (1989) Anomalous quartz from the Roter Kamm impact crater, Namibia: Evidence for post-impact hydrothermal activity? Geochimica et Cosmochimica Acta 53: 2113–2118CrossRefGoogle Scholar
  38. Komor SC, Valley JW, Brown PE (1988) Fluid-inclusion evidence for impact heating at the Siljan Ring, Sweden. Geology 16: 711–715CrossRefGoogle Scholar
  39. Kontak DJ, Sangster DF (1998) Aqueous and liquid petroleum inclusions in barite from the Walton Deposit, Nova Scotia, Canada: A Carboniferous, carbonatehosted Ba-Pb-Zn-Cu-Ag deposit. Economic Geology 93: 845–868CrossRefGoogle Scholar
  40. Li R, Parnell J (2003) In situ microanalysis of petroleum fluid inclusions by Time of Flight-Secondary Ion Mass Spectrometry as an indicator of evolving oil chemistry: a pilot study in the Bohai Basin, China. Journal of Geochemical Exploration 78–79: 377–384CrossRefGoogle Scholar
  41. Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362: 709–715CrossRefGoogle Scholar
  42. Lowenstein JM (1981) Immunological reactions from fossil materials. Philosophical Transactions of the Royal Society of London 292: 143–149Google Scholar
  43. Luders V, Horsfield B, Kenkmann T, Mingram B, Wittmann A (2003) Hydrocarbons and aqueous fluids in Cretaceous sediments of the ICDP-Chicxulub drill core YAX-1. Lunar and Planetary Science XXXIV, abstract 1378 (CD-ROM)Google Scholar
  44. Marshall D, Watkinson D, Farrow C, Molnar F, Fouillac A-M (1999) Multiple fluid generations in the Sudbury igneous complex: fluid inclusion, Ar, O, H, Rb and Sr evidence. Chemical Geology 154: 1–19CrossRefGoogle Scholar
  45. Marzi R, Rullkötter J (1992) Qualitative and quantitative evolution and kinetics of biological marker transformations — Laboratory experiments and application to the Michigan Basin. In: Moldowan JM, Albrecht P, Philip RP (eds) Biological Markers in Sediments and Petroleum, Prentice Hall, Englewood Cliffs, pp 18–41Google Scholar
  46. Maule J, Steele A, Toporski J, McKay DS (2003) A new antibody for category 1 biomarker detection. Lunar and Planetary Science XXXIV, abstract 2131 (CD-ROM)Google Scholar
  47. Mitchell P (2001) Microfluidics: Downsizing large-scale biology. Nature Biotechnology 19: 717–721CrossRefGoogle Scholar
  48. Munz IA (2001) Petroleum inclusions in sedimentary basins: systematics, analytical methods and applications. Lithos 55: 195–212CrossRefGoogle Scholar
  49. Norton CF, Grant WD (1988) Survival of halobacteria within fluid inclusions in salt crystals. Journal of General Bacteriology 134: 1365–1373Google Scholar
  50. Norton CF, McGenity TJ, Grant WD (1993) Archaeal halophiles (halobacteria) from two British salt mines. Journal of General Microbiology 139: 1077–1081Google Scholar
  51. Pagel M, Poty B (1975) Fluid inclusions in the rocks of the Charlevoix structure (Quebec, Canada). Fortschritte der Mineralogie 52: 479–489Google Scholar
  52. Pang LSK, George SC, Quezada RA (1998) A study of the gross compositions of oil-bearing fluid inclusions using high performance liquid chromatography. Organic Geochemistry 29: 1149–1161CrossRefGoogle Scholar
  53. Parnell J (2001) Paragenesis of mineralization within fractured pebbles in Witwatersrand conglomerates. Mineralium Deposita 36: 689–699CrossRefGoogle Scholar
  54. Parnell J (2002) Sampling of palaeo-water and biomolecules from surface deposits on Mars. Proceedings of the Second European Workshop on Exo/Astrobiology. European Space Agency Special Publication 518: 395–398Google Scholar
  55. Parnell J, Chen H, Klubov B (2001a) Hot oil in the Russian Arctic: Precipitation of vanadiferous bitumens, Novaya Zemlya. In: Piestrzynski A (ed) Mineral Deposits at the Beginning of the 21st Century, Balkema, Lisse, pp 71–74Google Scholar
  56. Parnell J, Middleton D, Chen H, Hall D (2001b) The use of integrated fluid inclusion studies in constraining oil charge history and reservoir compartmentation: examples from the Jeanne d’Arc Basin, offshore Newfoundland. Marine and Petroleum Geology 18: 535–549CrossRefGoogle Scholar
  57. Parnell J, Mazzini A, Chen H (2002) Fluid inclusion studies of chemosynthetic carbonates: strategy for seeking life on Mars. Astrobiology 2: 43–57CrossRefGoogle Scholar
  58. Parnell J, Osinski GR, Lee P, Baron M, Pearson MJ, Feely M (2003) Hydrocarbons in the Haughton impact structure, Devon Island, Nunavut, Canada. Lunar and Planetary Science XXXIV, abstract 1118 (CD-ROM)Google Scholar
  59. Pasteris JD, Wopenka B, Seitz JC (1988) Practical aspects of quantitative laser Raman microprobe spectroscopy for the study of fluid inclusions. Geochimica et Cosmochimica Acta 52: 979–988CrossRefGoogle Scholar
  60. Pearcy EC, Burruss RC (1993) Hydrocarbons and gold mineralization in the hotspring deposit at Cherry Hill, California. In: Parnell J, Kucha H, Landais P (eds) Bitumens in Ore Deposits, Springer, Heidelberg, pp 117–137Google Scholar
  61. Price LC (1993) Thermal stability of hydrocarbons in nature: Limits, evidence, characteristics, and possible controls. Geochimica et Cosmochimica Acta 57: 3261–3280CrossRefGoogle Scholar
  62. Price LC, De Wit E (2001) Evidence and characteristics of hydrolytic disproportionation of organic matter during metasomatic processes. Geochimica et Cosmochimica Acta 65: 3791–3826CrossRefGoogle Scholar
  63. Puura V, Suuroja K (1992) Ordovician impact crater at Kärdla, Hiiumaa Island, Estonia. Tectonophysics 216: 143–156CrossRefGoogle Scholar
  64. Radax C, Gruber C, Stan-Lotter H (2001) Novel haloarchaeal 16S rRNA gene sequences from Alpine Permo-Triassic rock salt. Extremophiles 5: 221–228CrossRefGoogle Scholar
  65. Rasmussen B, Buick R (2000) Oily old ores: Evidence for hydrothermal petroleum generation in an Archean volcanogenic massive sulphide deposit. Geology 28: 731–734CrossRefGoogle Scholar
  66. Reiser R, Tasch P (1960) Investigation of the viability of osmophile bacteria of great geological age. Transactions of the Kansas Academy of Sciences 63: 31–34Google Scholar
  67. Robb LJ, Charlesworth EG, Drennan GR, Gibson RL, Tongu EL (1997) Tectonometamorphic setting and paragenetic sequence of Au-U mineralization in the Archean Witwatersrand Basin. Australian Journal of Earth Sciences 44: 353–371Google Scholar
  68. Robertson PB, Grieve RAF (1977) Shock attenuation at terrestrial impact structures. In: Roddy DJ, Pepin RO, Merrill RB (eds) Impact and Explosion Cratering, Pergamon Press, New York, pp 687–702Google Scholar
  69. Roedder E (1984) Fluid Inclusions. Mineralogical Society of America, Reviews in Mineralogy 12, 644 ppGoogle Scholar
  70. Ruble TE, George SC, Lisk M, Quezada RA (1998) Organic compounds trapped in aqueous fluid inclusions. Organic Geochemistry 29: 195–205CrossRefGoogle Scholar
  71. Saylor J, Zolensky M, Bodnar R, Le L, Schwandt C (2001) Fluid inclusions in carbonaceous chondrites. Lunar and Planetary Science XXXII, abstract 1875 (CD-ROM)Google Scholar
  72. Sephton MA, Pillinger CT, Gilmour I (2000) Aromatic moieties in meteoritic macromolecular materials: Analysis by hydrous pyrolysis and δ13C of individual compounds. Geochimica et Cosmochimica Acta 64: 321–328CrossRefGoogle Scholar
  73. Shepherd TJ, Rankin AH, Alderton DH (1985) A Practical Guide to Fluid Inclusion Studies. Blackie, Glasgow, 239ppGoogle Scholar
  74. Simoneit BRT, Summons RE, Jahnke LL (1998) Biomarkers as tracers for life on early Earth and Mars. Origins of Life and Evolution of the Biosphere 28: 475–483CrossRefGoogle Scholar
  75. Stan-Lotter H, McGenity TJ, Legat A, Denner EBM, Glaser K, Stetter KO, Wanner G (1999) Very similar strains of Halococcus salifodinae are found in geographically separated Permo-Triassic salt deposits. Microbiology 145: 3565–3574Google Scholar
  76. Steele A, McKay D, Schweitzer M (2001a) Biotechnology approaches to life detection. In General Meeting of the NASA Astrobiology Institute (pp. 206–208), Carnegie Institute of Washington, Washington DCGoogle Scholar
  77. Steele A, Toporski JKW, Avci R, Guidry SA, McKay DS (2001b) Time of Flight-Secondary Ion Mass Spectrometry (ToF-SIMS) of a number of bacterial hopanoids. Organic Geochemistry 32: 905–911CrossRefGoogle Scholar
  78. Stuart F, Turner G, Taylor R (1994) He-Ar isotope systematics of fluid inclusions: Resolving mantle and crustal contributions to hydrothermal fluids. In: Matsuda J (ed) Noble Gas Geochemistry and Cosmochemistry. Terra Scientific Publishing Company, Tokyo, pp 261–277Google Scholar
  79. Sturkell EFF, Broman C, Forsberg P, Torssander P (1998) Impact-related hydrothermal activity in the Lockne impact structure, Jämtland, Sweden. European Journal of Mineralogy 10: 589–606Google Scholar
  80. Summons RE, Jahnke LL, Hope JM, Logan GA (1999) 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature 400: 554–557CrossRefGoogle Scholar
  81. Svanvik N, Westman G, Wang D, Kubista M (2000) Light-up probes: Thiazole orange-conjugated peptide nucleic acid for detection of target nucleic acid in homogeneous solution. Analytical Biochemistry 281: 26–35CrossRefGoogle Scholar
  82. Thomson ML, Mastalerz M, Sinclair AJ, Bustin RM (1992) Fluid source and thermal history of an epithermal vein deposit, Owen Lake, central British Columbia: evidence from bitumen and fluid inclusions. Mineralium Deposita 27: 219–225CrossRefGoogle Scholar
  83. Thurman EM (1985) Organic Geochemistry of Natural Waters. Nijhoff, Dordrecht, 497ppGoogle Scholar
  84. Toporski J, Steele A (2002) The relevance of bacterial biomarkers in astrobiological research. Proceedings of the Second European Workshop on Exo/Astrobiology. European Space Agency Special Publication 518: 239–242Google Scholar
  85. Toporski J, Steele A, Westall F, Avci R, Martill DM, McKay DS (2002) Morphologic and spectral investigation of exceptionally well-preserved bacterial biofilms from the Oligocene Enspel Formation, Germany. Geochimica et Cosmochimica Acta 66: 1773–1791CrossRefGoogle Scholar
  86. Warmflash D, Larios-Sanz M, Fox GE, McKay DS (2002) Progress in the use of rapid molecular techniques to detect life forms in soil: implications for interplanetary astrobiology missions. Lunar and Planetary Science XXXIII, abstract 1963 (CD-ROM)Google Scholar
  87. Weiss BP, Kirschvink JL, Baudenbacher FJ, Vali H, Peters NT, MacDonald FA, Wikswo JP (2000) Reconciliation of magnetic and petrographic constraints in ALH84001? Panspermia lives on! Lunar and Planetary Science XXXI, abstract 2078 (CD-ROM)Google Scholar
  88. Whitby JA, Rohner U, Benz W, Wurz P (2003) Laser-ablation mass spectrometer for the surface of Mercury. Lunar and Planetary Science XXXIV, abstract 1624 (CD-ROM)Google Scholar
  89. Wilkins AD, Wright A, Parnell J, Artz R (2002) Astrobiological use of model crystals containing biomolecules and microbes: Testing analytical techniques and space exposure experiments. Abstracts of the Second European Workshop on Exo/Astrobiology, Graz, Austria, European Space Agency Special Publication 518: 567–568Google Scholar
  90. Zolensky ME, Bodnar RJ, Gibson EK, Nyquist LE, Reese Y, Shih C-Y, Wiesmann H (1999) Asteroidal water within fluid inclusion-bearing halite in an H5 chondrite, Monahans. Science 285: 1377–1379CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • John Parnell
    • 1
  • Martin Baron
    • 1
  • Helen Wycherley
    • 1
  1. 1.Department of Geology and Petroleum GeologyUniversity of AberdeenAberdeenUK

Personalised recommendations