Advertisement

Applications of the inversion method

  • Ülle Kotta
Part II Control System Design For Partly Or Completely Right Invertible Systems
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 205)

Keywords

Equilibrium Point State Feedback Inversion Algorithm Invertibility Index Dynamic Compensator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes and References

  1. [BI86]
    Di Benedetto M.D. and A. Isidori. The matching of nonlinear models via dynamic state feedback. SIAM J. Control and Optimization, 1986, v. 24, 1063–1075.MATHMathSciNetCrossRefGoogle Scholar
  2. [CG92]
    Chung S.T. and J.W. Grizzle. Internally exponentially stable non-linear discrete-time non-interacting control via static feedback. Int. J. Contr., 1992, v. 55, 1071–1092.MATHMathSciNetCrossRefGoogle Scholar
  3. [Fli87]
    Fliess M. Esquisses pour une théorie des systemes non linéaires en temps discret. Rend. Sem. Mat. Univ. Politec. Torino. Fasc. Spec. Control Theory, 1987, 55–67.Google Scholar
  4. [Gri86]
    Grizzle J.W. Local input-output decoupling of discrete-time nonlinear systems. Int. J. Control, 1986, v. 43, 1517–1530.MATHMathSciNetCrossRefGoogle Scholar
  5. [Hui91]
    Huijberts H. Dynamic feedback in nonlinear synthesis problems. Ph.D. Thesis, University of Twente, Enschede, 1991.Google Scholar
  6. [Hui92]
    Huijberts H.J.C. A nonregular solution of the nonlinear dynamic disturbance decoupling problem vith an application to a complete solution of the nonlinear model matching problem. SIAM J. Control and Optimization, 1992, v. 30, 350–366.MATHMathSciNetCrossRefGoogle Scholar
  7. [Kot92a]
    Kotta Ü. Model matching of nonlinear discrete-time systems in the presence of unmeasurable disturbances. Prepr. 2nd IFAC Symp. on Nonlinear Control Systems Design. Bordeaux, 1992, 563–568.Google Scholar
  8. [Kot92b]
    Kotta Ü. Model matching of nonlinear discrete-time systems in the presence of measurable disturbances. Prepr. 11th Int. Conf. on Systems Science, Wroclaw, Poland, 1992.Google Scholar
  9. [Kot93]
    Kotta Ü. Structural approach to discrete-time nonlinear model matching. Prepr. of 12th IFAC World Congress, Sydney, 1993, v. 9, 261–264.Google Scholar
  10. [Kot94a]
    Kotta Ü. Model matching of nonlinear discrete-time systems in the presence of disturbances. Proc. Estonian Acad. Sci. Phys. Math., 1994, v. 43, 7–14.MATHMathSciNetGoogle Scholar
  11. [Kot94b]
    Kotta Ü. Comments on a structural approach to nonlinear model matching problem. SIAM J. Control and Optimization, 1994, v. 32, 1555–1558.MATHMathSciNetCrossRefGoogle Scholar
  12. [KN94a]
    Kotta Ü. and H. Nijmeijer. On dynamic input-output linearization of discrete-time nonlinear systems. Int. J. Control, 1994, v. 60, 1319–1337.MATHMathSciNetCrossRefGoogle Scholar
  13. [KN94b]
    Kotta Ü. and H. Nijmeijer. Immersion a discrete-time nonlinear system by regular dynamic state feedback into a linear system. Submitted for publication.Google Scholar
  14. [LM87]
    Lee H.G. and S.I. Marcus. On input-output linearization of discrete-time nonlinear systems. Systems and Control Letters, 1987, v. 8, 249–259.MATHMathSciNetCrossRefGoogle Scholar
  15. [LM88]
    Lee H.G. and S.I. Marcus. Immersion and immersion by nonsingular feedback of a discrete-time nonlinear system into a linear ststem. IEEE Trans. on Autom. Control, 1988, v. 33, 479–483.MATHCrossRefGoogle Scholar
  16. [Mal82]
    Malabre M. Structure a l'infini des triplets invariants. Application a la poursuite parfaite de modele. Lect. Notes in Control and Inf. Sci., 1982, v. 44, 43–53.MathSciNetCrossRefGoogle Scholar
  17. [MNCI89]
    Monaco S., D.Normand-Cyrot and T.Isola. Nonlinear decoupling in discrete systems. Proc. IFAC Symp. on Nonlinear Control Systems Design, Capri, Italy, 1989, 48–55.Google Scholar
  18. [MPC91]
    Moog C.H., A.M. Perdon and G. Conte. Model matching and factorization for nonlinear systems: a structural approach. SIAM J. Control and Optimization, 1991, v. 29, 769–785.MATHMathSciNetCrossRefGoogle Scholar
  19. [Nij87]
    Nijmeijer H. Local (dynamic) input-output decoupling of discrete-time nonlinear systems. IMA Journal of Mathematical Control & Information, 1987, v. 4, 237–250.MATHMathSciNetCrossRefGoogle Scholar
  20. [Nij90]
    Nijmeijer H. Remarks on the control of discrete-time nonlinear systems. In: Perspectives in Control Theory. (Eds.) B. Jakubczyk, K. Malanowski, W. Respondek. Birkhäuser, Boston, 1990, 261–276.CrossRefGoogle Scholar
  21. [NS90]
    Nijmeijer H. and A. van der Schaft. Nonlinear Dynamical Control Systems. Berlin, Springer-Verlag, 1990.MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 1995

Authors and Affiliations

  • Ülle Kotta
    • 1
  1. 1.Institute of CyberneticsTallinnEstonia

Personalised recommendations