Advertisement

The inversion method and applications

  • Ülle Kotta
Part I Control System Design For (d1, ..., dp)-Forward Time-Shift Right Invertible Systems
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 205)

Keywords

Equilibrium Point State Feedback Inversion Method Inverse System Delay Order 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes and References

  1. [Gri86]
    Grizzle J.W. Local input-output decoupling of discrete-time nonlinear systems. Int. J. Contr., 1986, v. 43, 1517–1530.MATHMathSciNetCrossRefGoogle Scholar
  2. [Kot85]
    Kotta Ü. Decoupling of discrete-time nonlinear systems by state feedback. Prepr. of AFCET Congress „Automatique 85“. Toulouse, 1985.Google Scholar
  3. [Kot87a]
    Kotta Ü. The matching of a prespecified linear input-output behaviour in a discrete time nonlinear system. Prepr. of 7th Int. Conf. on Control Systems and Computer Sci., Bucharest, 1987.Google Scholar
  4. [Kot87b]
    Kotta Ü. Model matching of nonlinear discrete time systems. Prepr. of 1st Int. Conf. on Industrial and Appl. Mathematics. Paris, 1987.Google Scholar
  5. [Kot88]
    Kotta Ü. Discrete-time linear-analytic system linearization and decoupling via application of right inverse system. Proc. Estonian Acad. Sci. Phys. Math., 1988, v. 37, 257–262.MATHMathSciNetGoogle Scholar
  6. [Kot89]
    Kotta Ü. Approximate input-output linearization of discrete-time nonlinear systems. Proc. Estonian Acad. Sci. Phys. Math., 1989, v. 38, 460–462.MATHMathSciNetGoogle Scholar
  7. [Kot90]
    Kotta Ü. Model matching of linear-analytic discrete time systems via dynamic state feedback. Proc. Estonian Acad. Sci. Phys. Math., 1990, v. 39, 236–246.MATHMathSciNetGoogle Scholar
  8. [Kot91]
    Kotta Ü. Model matching of nonlinear single-input single-output discrete-time systems: formal and local solutions. Proc. Estonian Acad. Sci. Phys. Math., 1991, v.40, 89–98.MATHMathSciNetGoogle Scholar
  9. [Kot92]
    Kotta Ü. Model matching of nonlinear discrete-time systems via dynamic state feedback. Proc. Estonian Acad. Sci. Phys. Math., 1992, v. 41, 109–117.MATHMathSciNetGoogle Scholar
  10. [Nij87]
    Nijmeijer H. Local (dynamic) input-output decoupling of discrete-time nonlinear systems. IMA J. of Mathematical Control and Information, 1987, v. 4, 237–250.MATHMathSciNetCrossRefGoogle Scholar
  11. [MNC83a]
    Monaco S., and D. Normand-Cyrot. The immersion under feedback of a multidimensional discrete-time non-linear system into a linear system. Int. J. Control, 1983, v. 38, 245–261.MATHCrossRefGoogle Scholar
  12. [MNC83b]
    Monaco S., and D.Normand-Cyrot. Formal power series and input-output linearization of nonlinear discrete-time systems. Proc. 22nd IEEE Conf. on Decision and Control, San Antonio, 1883, 665–670.Google Scholar
  13. [MNC84]
    Monaco S., and D. Normand-Cyrot. Sur la commande non interactive des systèmes non linéaires en temps discrets. Lect. Notes in Contr. and Inf. Systems, 1984, v. 63, 364–377.MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag London Limited 1995

Authors and Affiliations

  • Ülle Kotta
    • 1
  1. 1.Institute of CyberneticsTallinnEstonia

Personalised recommendations