Advertisement

Space distribution and luminosity function of quasars

  • Maarten Schmidt
VII. Cosmological and Evolutionary Considerations
Part of the Lecture Notes in Physics book series (LNP, volume 307)

Abstract

We discuss the evolution of the luminosity function of quasars in terms of either density evolution or luminosity evolution. The observations appear to support pure luminosity evolution in which the entire luminosity function shifts in the luminosity coordinate as a function of cosmic time. The simplest interpretation is that all quasars were formed some 10 billion years ago and that all suffer the same luminosity decrease as the time goes on. This picture encounters major difficulties in that it predicts (a) present quasar masses that are 100 times as large as those derived from the physics and dynamics of the broad-line region, and (b) a contribution by Seyfert galaxies to the 2 keV X-ray background that is considerably in excess of that observed.

The luminosity function of quasars is of fundamental importance in the interpretation of quasar counts as a function of optical magnitude and redshift. The shape of the luminosity function and its dependence on redshift potentially convey information about the energy mechanism of quasars and its dependence on environment. Depending on the life time of the quasar phase, the luminosity function can be used to estimate the space density of dead quasars or black holes, presumably located in the nuclei of galaxies. Although we will discuss only the optical luminosity function, the general luminosity function of quasars is also a function of radio and X-ray luminosity, and possibly other properties related to the environment.

Keywords

Black Hole Luminosity Function Space Density Density Evolution Seyfert Galaxy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Braccesi, A., Formiggini, L., and Gandolfi, E. 1970, Astron. Astrophys., 5, 264.Google Scholar
  2. Braccesi, A., Lynds, R., and Sandage, A. R. 1968, Astrophys. J. (Letters), 152, L105.Google Scholar
  3. Boyle, B. J., Fong, R., Shanks, T., and Peterson, B. A. 1987, Mon. Not. Roy. Astron. Soc., 227, 717.Google Scholar
  4. Cavaliere, A., Giallongo, E., and Vagnetti, F. 1985, Astrophys. J., 296, 402.Google Scholar
  5. Clowes, R. G. 1981, Mon. Not. Roy. Astron. Soc., 197, 731.Google Scholar
  6. Crampton, D., Cowley, A. P., and Hartwick, F. D. A. 1987, Astrophys. J., 314, 129.Google Scholar
  7. Green, R. F. 1986, in IAU Symposium 119, Quasars, ed. G. Swarup and V. K. Kapahi (Dordrecht: Reidel), p. 429.Google Scholar
  8. Green, R. F., Schmidt, M., and Liebert, J. 1986, Astrophys. J. Suppl., 61, 305.Google Scholar
  9. Hazard, C., and McMahon, R. 1985, Nature, 314, 238.Google Scholar
  10. Hutchings, J. B., Crampton, D., and Campbell, B. 1984, Astrophys. J., 280, 41.Google Scholar
  11. Koo, D. C., and Kron, R. G. 1982, Astron. Astrophys., 105, 107.Google Scholar
  12. Koo, D. C., and Kron, R. G. 1986, Pub. Astron. Soc. Pac., 98, 285.Google Scholar
  13. Koo, D. C., and Kron, R. G. 1988, preprint.Google Scholar
  14. Mathez, G. 1976, Astron. Astrophys., 53, 115.Google Scholar
  15. Osmer, P. S. 1980, Astrophys. J. Suppl., 42, 523.Google Scholar
  16. Osmer, P. S. 1982, Astrophys. J., 253, 28.Google Scholar
  17. Osmer, P. S. 1983a, in IAU Symposium 104, ed. G. O. Abell and G. Chincarini (Dordrecht: Reidel), p. 35.Google Scholar
  18. Osmer, P. S. 1983b, in “Quasars and Gravitational Lenses”, Proc. 24th Liège Symp. (Université de Liege), p. 51.Google Scholar
  19. Perry, J. J., Ward, M. J., and Jones, M. 1987, Mon. Not. Roy. Astron. Soc., 228, 623.Google Scholar
  20. Savage, A., and Peterson, B. A. 1983, in IAU Symposium 104, ed. G. O. Abell and G. Chincarini (Dordrecht: Reidel), p. 57.Google Scholar
  21. Schmidt, M. 1970, Astrophys. J., 162, 371.Google Scholar
  22. Schmidt, M. 1972, Astrophys. J., 176, 273.Google Scholar
  23. Schmidt, M., and Green, R. F. 1983, Astrophys. J., 269, 352.Google Scholar
  24. Schmidt, M., and Green, R. F. 1986, Astrophys. J., 305, 68.Google Scholar
  25. Schmidt, M., Schneider, D. P., and Gunn, J. E. 1986a, Astrophys. J., 306, 411.Google Scholar
  26. Schmidt, M., Schneider, D. P., and Gunn, J. E. 1986b, Astrophys. J., 310, 518.Google Scholar
  27. Schmidt, M., Schneider, D. P., and Gunn, J. E. 1987, Astrophys. J. (Letters), 316, L1.Google Scholar
  28. Veron, P. 1986, Astron. Astrophys., 170, 37.Google Scholar
  29. Wandel, A., and Yahil, A. 1985, Astrophys. J. (Letters), 295, L1.Google Scholar
  30. Yee, H. K. C., and Green, R. F. 1987, private communication.Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Maarten Schmidt
    • 1
  1. 1.California Institute of TechnologyPasadena

Personalised recommendations