Advertisement

On the learnability of DNF formulae

  • L. Kucera
  • A. Marchetti-Spaccamela
  • M. Protasi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 317)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5 References

  1. [BEHW 86]
    A.Blumer,A.Ehrenfeucht,D.Haussler,M.Warmuth Classifying learnable geometric concepts with the Vapnik-Chervonenkis dimension Proc. 18th Acm Symposium on Theory of Computing (1986)Google Scholar
  2. [BI 88]
    G.M.Benedek,A.Itai Non uniform learnability (These proceedings) (1988)Google Scholar
  3. [BR 87]
    P.Berman,R.Roos Learning one-counter languages in polynomial time Proc. 28th Symposium on Foundations of Computer Science (1987)Google Scholar
  4. [EHKV 87]
    A.Ehrenfeucht,D.Haussler,M.Kearns,L.Valiant A general lower bound on the number of examples needed for learning (to appear)Google Scholar
  5. [KLPV 87]
    M.Kearns,M.Li,L.Pitt,L.G.Valiant On the learnability of boolean formulae Proc.19th Acm Symposium on Theory of Computing (1987)Google Scholar
  6. [L 87]
    N.Littlestone Learning quickly when irrelevant attributes abound: a new linear threshold algorithm Proc. 28th Symposium on Foundations of Computer Science (1987)Google Scholar
  7. [N 87]
    B.K.Natarajan On learning boolean functions Proc. 19th Symposium on Theory of Computing (1987)Google Scholar
  8. [V 84]
    L.G.Valiant A theory of learnable Comm.Acm, Vol.27,n.11 (1984)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • L. Kucera
    • 1
  • A. Marchetti-Spaccamela
    • 2
  • M. Protasi
    • 3
  1. 1.Dept. of Applied MathematicsCharles UniversityPragueCzechoslovakia
  2. 2.Dept. of MathematicsUniversity of L'AquilaL'AquilaItaly
  3. 3.Dept. of MathematicsUniversity of Rome "Tor Vergata"RomaItaly

Personalised recommendations