The complexity of matrix transposition on one-tape off-line turing machines with output tape

  • Martin Dietzfelbinger
  • Wolfgang Maass
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 317)


A series of existing lower bound results for one-tape Turing machines (TM's) is extended to the strongest such model for the computation of functions: one-tape off-line TM's with a write-only output tape. (“Off-line” means: having a two-way input tape.) The following optimal lower bound is shown: Computing the transpose of Boolean ℓ×ℓ-matrices takes Ω(ℓ5/2)=Ω(n5/4) steps on such TM's. (n=ℓ2 is the length of the input.)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Dietzfelbinger, M.: Lower bounds on computation time for various models in computational complexity theory. Ph.D.-Thesis, University of Illinois at Chicago, 1987.Google Scholar
  2. [2]
    Hennie, F.C.: One-tape off-line Turing machine computation. Information and Control 8: 553–578, 1965.Google Scholar
  3. [3]
    Hopcroft,J.E., and Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Reading (Mass.), Addison-Wesley,1979.Google Scholar
  4. [4]
    Li, M., Longpré, L., and Vitányi, P.M.B.: On the power of the queue. In Structure in Complexity Theory, ed. A. Selman, pp. 219–233. Lecture Notes in Computer Science 223, Berlin, Springer-Verlag, 1986.Google Scholar
  5. [5]
    Li,M., and Vitányi, P.M.B.: Tape versus queue and stacks: The lower bounds. Information and Computation 77, 1988.Google Scholar
  6. [6]
    Maass, W.: Combinatorial lower bound arguments for deterministic and nondeterministic Turing machines, Trans. Amer. Math.Soc. 292: 675–693, 1985.Google Scholar
  7. [7]
    Maass, W., and Schnitger, G.: An optimal lower bound for Turing machines with one work tape and a two-way input tape. In Structure in Complexity Theory, ed. A. Selman, pp. 249–264. Lecture Notes in Computer Science 223. Berlin, Springer-Verlag, 1986.Google Scholar
  8. [8]
    Maass, W., Schnitger, G., and Szemerédi, E.: Two tapes are better than one for off-line Turing machines. In Proc. 19th ACM Sympos. on Theory of Computing, pp. 94–100, 1987.Google Scholar
  9. [9]
    Paul, W.: On-line simulation of k+1 tapes by k tapes requires nonlinear time. Information and Control 53: 1–8, 1982.Google Scholar
  10. [10]
    Paul, W., and Stoss, H.-J.: Zur Komplexität von Sortierproblemen. Acta Informatica 3: 217–225, 1974.Google Scholar
  11. [11]
    Vitányi, P.M.B.: Square time is optimal for the simulation of a pushdown store by an oblivious one-head unit. Inform. Proc. Letters 21: 87–91, 1985.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • Martin Dietzfelbinger
    • 1
  • Wolfgang Maass
    • 2
  1. 1.Lehrstuhl Informatik IIUniversität DortmundDortmund 50FRG
  2. 2.Department of Mathematics, Statistics, and Computer ScienceUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations