Advertisement

New techniques for proving the decidability of equivalence problems

  • Karel CulikII
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 317)

Abstract

We will discuss several recently developed techniques for proving the decidability of the equivalence problem for devices defining languages and relations. Most of these techniques come from the development originated in the proof of the decidability of the DOL equivalence problem. Of particular importance is the recently shown validity of the Ehrenfeucht conjecture and its effective variants.

Keywords

Equivalence Problem Finite Automaton Finite System Input Word Input Alphabet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. Abdulrab, Solving equations on words: study and implementation of Makanin's algorithm, (in French) Ph.D. Thesis, Faculte des Sciences d l'Université de Rouen (1987).Google Scholar
  2. [2]
    J. Albert, K. Culik II and J. Karhumäki, Test sets for context-free languages and algebraic systems of equations, Inform. Control 52 (1982) 172–186.Google Scholar
  3. [3]
    M.H. Albert and J. Lawrence, Test sets for finite substitutions, Theoret. Comput. Sci 43 (1986) 117–122.Google Scholar
  4. [4]
    M.H. Albert and J. Lawrence, A proof of Ehrenfeucht Conjecture, Theoret. Comput. Sci. 41 (1985) 121–123.Google Scholar
  5. [5]
    Y. Bar-Hillel, M. Perles and E. Shamir, On formal properties of simple phrase structure grammars, Z. Phonetik. Sprachwiss. Kommunikationforsch. 14 (1961) 143–172.Google Scholar
  6. [6]
    J. Berstel, Transductions and Context-Free Languages, Teubner, Stuttgart 1979.Google Scholar
  7. [7]
    M. Bird, The equivalence problem for deterministic two-tape automata, J. Comput. System Sci. 7 (1973) 218–236.Google Scholar
  8. [8]
    M. Blattner and T. Head, Single-valued a-transducers, J. Comput. System Sci. 15 (1977) 310–327.Google Scholar
  9. [9]
    M. Blattner and T. Head, The decidability of equivalence for deterministic finite transducers, J. Comput. System Sci. 19 (1979) 45–49.Google Scholar
  10. [10]
    K. Culik II, Some decidability results about regular und pushdown translations, Inform. Process. Lett. 8 (1979) 5–8.Google Scholar
  11. [11]
    K. Culik II and I. Fris, The decidability of the equivalence problem for DOL systems, Inform. Control 35 (1977) 20–39.Google Scholar
  12. [12]
    K. Culik II and J. Karhumäki, Systems of equations over a free monoid and Ehrenfeucht Conjecture, Discrete Math. 43 (1983) 139–153.Google Scholar
  13. [13]
    K. Culik II and J. Karhumäki, A new proof for the DOL sequence equivalence problem and its implications, in the Book of L, Rozenberg and Salomaa, eds., Springer-Verlag (1986) 63–74.Google Scholar
  14. [14]
    K. Culik II and J. Karhumäki, The decidability of the DTOL sequence equivalence problem and related decision problems, in The Very Knowledge of Coding, edited by H. Laakso and A. Salomaa, University Press, Univ. of Turku (1987) 43–54.Google Scholar
  15. [15]
    K. Culik II and J. Karhumäki, The equivalence problem for single-valued two-way transducers (on NPDTOL languages) is decidable, SIAM J. Comput. 16 (1987) 221–230.Google Scholar
  16. [16]
    K. Culik II and J. Karhumäki, The equivalence problem for finite-valued transducers (on HD-TOL languages) is decidable, Theoret. Comput. Sci. 47 (1986) 71–84.Google Scholar
  17. [17]
    K. Culik II and J. Karhumäki, Synchronizable pushdown automata and the decidability of their equivalence, Acta Informatica 23 (1986) 598–605.Google Scholar
  18. [18]
    K. Culik II and J. Karhumäki, manuscript in preparation.Google Scholar
  19. [19]
    K. Culik II and A. Salomaa, On the decidability of morphic equivalence for languages, J. Comput. System Sci. 17 (1978) 163–175.Google Scholar
  20. [20]
    K. Culik II and A. Salomaa, Test sets and checking words for homomorphism equivalence, J. Comput. System. Sci. 20 (1980) 379–395.Google Scholar
  21. [21]
    E.P. Friedman, The inclusion problem for simple languages, Theoret. Comp. Sci. 1 (1976) 297–316.Google Scholar
  22. [22]
    E.P. Friedman, The equivalence problem for deterministic context-free languages and monadic recursion schemes, J. Comput. and Systems Sciences 14 (1977) 344–359.Google Scholar
  23. [23]
    P.C. Fischer and A.L. Rosenberg, Multi-tape one-way nonwriting automata, J. Comput. System Sci. 2 (1968) 88–101.Google Scholar
  24. [24]
    S. Ginsburg and G.F. Rose, Some recursively unsolvable problems in ALGOL-like languages, J. ACM 10 (1963) 29–47.Google Scholar
  25. [25]
    T. Griffiths, The unsolvability of the equivalence problem for ε-free nondeterministic generalized sequential machines, J. ACM 15 (1968) 409–413.Google Scholar
  26. [26]
    V. S. Guba, personal communication, 1985.Google Scholar
  27. [27]
    E. Gurari, The equivalence problem for deterministic two-way transducers is decidable, SIAM J. Comput. 11 (1982) 448–452.Google Scholar
  28. [28]
    M. A. Harrison, Introduction to Formal Language Theory, Addison-Wesley, Reading 1979.Google Scholar
  29. [29]
    M.A. Harrison, I. M. Havel and A. Yehudai, On equivalence of grammars through transformation trees, Theoret. Comput. Sci. 9 (1979) 173–205.Google Scholar
  30. [30]
    O. Ibarra, The unsolvability of the equivalence problem for ε-free NGSM's with unary input (output) alphabet and applications, SIAM J. Comput. 4 (1978) 524–532.Google Scholar
  31. [31]
    O. Ibarra and L. Rossier, On the decidability of equivalence for deterministic pushdown transducers, Inf. Proc. Letters 13 (1981) 89–93.Google Scholar
  32. [32]
    N. Jones and W. Lasser, Complete Problems for deterministic polynomial time, Theoret. Comput. Sci. 3 (1977) 105–117.Google Scholar
  33. [33]
    J. Karhumäki, The Ehrenfeucht Conjecture: A compactness claim for finitely generated free monoids, Theoret. Comput. Sci. 29 (1984) 285–308.Google Scholar
  34. [34]
    J. Karhumäki, The Ehrenfeucht conjecture for transducers, J. Inf. Process. Cybern. EIK 23 (1987) 389–401.Google Scholar
  35. [35]
    J. Karhumäki, On recent trends in formal language theory, 14th ICALP, Lecture Notes in Comp. Sci. 267 (1987) 136–162, Springer-Verlag.Google Scholar
  36. [36]
    J. Karhumäki, The impact of the DOL problem. Bull. EATCS (1988), to appear.Google Scholar
  37. [37]
    J. Karhumäki and H.C.M. Kleijn, On the equivalence of compositions of morphisms and inverse morphisms on regular languages, RAIRO Theoret. Inform. 19 (1985) 203–211.Google Scholar
  38. [38]
    E.B. Kinber, The inclusion problem for some classes of deterministic multitape automata, Theoret. Comput. Sci. 26 (1983) 1–24.Google Scholar
  39. [39]
    D.E. Knuth, On the translation of languages from left to right, Inform. Control 8 (1965) 607–639.Google Scholar
  40. [40]
    A.J. Korenjak and J.E. Hopcroft, Simple deterministic languages, in Proc. IEEE 7th Annual Symposium on Switching and Automata Theory (1966) 36–46.Google Scholar
  41. [41]
    H.R. Lewis, A new decidable problem, with applications, Proc. 18th FOCS (1979) 62–73.Google Scholar
  42. [42]
    A. de Luca and A. Restivo, On a generalization of a conjecture of Ehrenfeucht, Bull. EATCS 30 (1986) 84–90.Google Scholar
  43. [43]
    G. S. Makanin, The problem of solvability of equations in a free semigroup, Mat. Sb. 103 (1977) 147–236.Google Scholar
  44. [43a]
    , English Transl. in: Math. USSR-Sb. 32 (1977) 129–198.Google Scholar
  45. [44]
    Y. Maon, Decision problems concerning equivalence of transductions on languages, Ph.D. Thesis, Tel Aviv University (1985).Google Scholar
  46. [45]
    R. McNaughton, A proof of the Ehrenfeucht conjecture, Informal Memorandum (1985).Google Scholar
  47. [46]
    E.F. Moore, Gedanken-experiments on sequential machines, in: Automata Studies (Princeton University Press, 1956).Google Scholar
  48. [47]
    M. Nielsen, On the decidability of some equivalence problem for DOL-systems, Inform. Control 25 (1974) 166–193.Google Scholar
  49. [48]
    M. Oyamaguchi, The equivalence problem for real-time DPDAs, J. ACM 34 (1987) 731–760.Google Scholar
  50. [49]
    M. Oyamaguchi and N. Honda, The decidability of equivalence for deterministic stateless pushdown automata, Inform. Contr. 38 (1978) 367–376.Google Scholar
  51. [50]
    M. Oyamaguchi, N. Honda and Y. Inagaki, The equivalence problem for real-time strict deterministic languages, Inform. Control 45 (1980) 90–115.Google Scholar
  52. [51]
    D. Perrin, On the solution of Ehrenfeucht conjecture, Bull. EATCS 27 (1985) 68–70.Google Scholar
  53. [52]
    E.T. Poulsen, The Ehrenfeucht conjecture: An algebra-framework for its proof, Theoret. Comput. Sci. 44 (1986) 33–339.Google Scholar
  54. [53]
    M.O. Rabin and D. Scott, Finite automata and their decision problems, IBM J. Res. Develop. 3 (1959) 114–125.Google Scholar
  55. [54]
    V.J. Romanovsky, The equivalence problem for real-time deterministic pushdown automata, Kybernetika 2 (1986) 13–23 (in Russian).Google Scholar
  56. [55]
    G. Rozenberg and A. Salomaa, The Mathematical Theory of L Systems, Academic Press, New York 1980.Google Scholar
  57. [56]
    D.J. Rosenkrants and D.J. Stearns, Properties of deterministic top-down grammars, Inform. Control 17 (1970) 226–256.Google Scholar
  58. [57]
    A. Salomaa, The Ehrenfeucht conjecture: A proof for language theorists, Bull. EATCS 27 (1985) 71–82.Google Scholar
  59. [58]
    A. Salomaa and M. Soittola, Automata-theoretic aspects of formal power series, Springer-Verlag, 1978.Google Scholar
  60. [59]
    M.P. Schützenberger, Sur les relations rationnelles, Proc. 2nd GI Conference Automata Theory and Formal Languages, Lecture Notes in Computer Sci. 33 Springer-Verlag (1975) 209–312.Google Scholar
  61. [60]
    J.R. Stallings, Finiteness properties of matrix representations, Ann. Math. 124 (1986) 337–346.Google Scholar
  62. [61]
    E. Tomita, A direct branching algorithm for checking equivalence of strict deterministic vs. LL(k) grammars, Theoret. Comput. Sci. 23 (1983).Google Scholar
  63. [62]
    L.G. Valiant, The equivalence problem for deterministic finite-turn pushdown automata, Inform. Control 25 (1974) 123–133.Google Scholar
  64. [63]
    L.G. Valiant and M.S. Paterson, Deterministic one-counter automata, J. Comput. System Sci. 10 (1975) 340–350.Google Scholar
  65. [64]
    A. Weber and H. Seidel, On the degree of ambiguity of finite automata, MFCS 1986, Lecture Notes in Computer Science 233, Springer-Verlag (1986) 620–629.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • Karel CulikII
    • 1
  1. 1.Department of Computer ScienceUniversity of South CarolinaColumbia

Personalised recommendations