Polynomial algorithms for graph isomorphism and chromatic index on partial k-trees

  • Hans L. Bodlaender
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 318)


In this paper we show that Graph Isomorphism and Chromatic Index are solvable in polynomial time when restricted to the class of graphs with treewidth ≤k (k a constant) (or equivalently, the class of partial k-trees). Also, we show that there exist algorithms that find tree-decompositions with treewidth ≤k of graphs with treewidth ≤k, in O(n3) time, (k constant).


Chromatic Index Graph Isomorphism graphs with small treewidth partial k-trees tree-decompositions NP-complete problems polynomial time algorithms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S. Arnborg. Efficient algorithms for combinatorial problems on graphs with bounded decomposability — A survey. BIT, 25:2–23, 1985.Google Scholar
  2. [2]
    S. Arnborg, D. Corneil, and A. Proskurowski. Complexity of finding embeddings in a k-tree. SIAM J. Alg. Disc. Meth., 8:277–284, 1987.Google Scholar
  3. [3]
    S. Arnborg, J. Lagergren, and D. Seese. Which problems are easy for tree-decomposable graphs. 1987. Ext. abstract to appear in proc. ICALP 88.Google Scholar
  4. [4]
    S. Arnborg and A. Proskurowski. Characterization and recognition of partial 3-trees. Siam J. Alg. Disc. Meth., 7:305–314, 1986.Google Scholar
  5. [5]
    H. L. Bodlaender. Classes of Graphs with Bounded Treewidth. Tech. Rep. RUU-CS-86-22, Dept. Of Comp. Science, University of Utrecht, Utrecht, 1986.Google Scholar
  6. [6]
    H. L. Bodlaender. Dynamic programming algorithms on graphs with bounded tree-width. Tech. Rep. MIT/LCS/TR-394, Lab. for Comp. Science, M.I.T., 1987. Ext. abstract to appear in proc. ICALP 88.Google Scholar
  7. [7]
    H. L. Bodlaender. NC-algorithms for graphs with small treewidth. Tech. Rep. RUU-CS-88-4, Dept. of Comp. Science, Univ. of Utrecht, Utrecht, 1988.Google Scholar
  8. [8]
    B. Courcelle. Recognizability and Second-Order Definability for Sets of Finite Graphs. Preprint, Universite de Bordeaux, Jan. 1987.Google Scholar
  9. [9]
    M. R. Fellows and M. A. Langston. Nonconstructive tools for proving polynomial-time decidability. 1987. To appear in JACM.Google Scholar
  10. [10]
    I. Holyer. The NP-completeness of edge-coloring. SIAM J. Comput, 10:718–720, 1981.Google Scholar
  11. [11]
    J. E. Hopcroft and R. M. Karp. An n 5/2 algorithm for maximum matching in bipartite graphs. SAIM J. on Comput., 225–231, 1975.Google Scholar
  12. [12]
    D. S. Johnson. The NP-completeness column: an ongoing guide. J. of Algorithms, 6:434–451, 1985.Google Scholar
  13. [13]
    N. Robertson and P. Seymour. Graph minors. III. Planar tree-width. J. Combin. Theory Series B, 36:49–64, 1984.Google Scholar
  14. [14]
    N. Robertson and P. Seymour. Graph minors. X. Obstructions to tree-decompositions. 1986. Manuscript.Google Scholar
  15. [15]
    N. Robertson and P. Seymour. Graph minors. XII. Excluding a non-planar graph. 1986. Manuscript.Google Scholar
  16. [16]
    N. Robertson and P. Seymour. Graph minors. XIII. The disjoint paths problem. 1986. Manuscript.Google Scholar
  17. [17]
    P. Scheffler. Linear-time algorithms for NP-complete problems restricted to partial k-trees. Report R-MATH-03/87, Karl-Weierstrass-Institut Für Mathematik, Berlin, GDR, 1987.Google Scholar
  18. [18]
    M. M. Sysło. NP-complete problems on some tree-structured graphs: a review. In M. Nagl and J. Perl, editors, Proc. WG'83 International Workshop on Graph Theoretic Concepts in Computer Science, pages 342–353, Univ. Verlag Rudolf Trauner, Linz, West Germany, 1983.Google Scholar
  19. [19]
    J. Valdes, R. Tarjan, and E. L. Lawler. The recognition of series parallel digraphs. SIAM J. Comput., 11:298–313, 1982.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • Hans L. Bodlaender
    • 1
  1. 1.Dept. of Computer ScienceUniversity of UtrechtUtrechtthe Netherlands

Personalised recommendations