Advertisement

Linear algorithms for graph separation problems

  • Hristo N. Djidjev
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 318)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H.N. Djidjev. On the problem of partitioning planar graphs, SIAM J. Algebr. Discr. Methods 3, 1982, 229–241.Google Scholar
  2. [2]
    H.N. Djidjev. A separator theorem for graphs of fixed genus, SERDICA, Vol. 11, 1985, pp. 319–329.Google Scholar
  3. [3]
    H. Gazit, G.L. Miller. A parallel algorithm for finding a separator for planar graphs. In: Proc. 28-th Foundations of Computer Science, IEEE, 1987, 238–248.Google Scholar
  4. [4]
    J.R. Gilbert. Graph separator theorem and sparse Gaussean elimination, Ph. D. Thesis, Stanford University, 1980.Google Scholar
  5. [5]
    J.R. Gilbert, J.P. Hutchinson, R.E. Tarjan. A separator theorem for graphs of bounded genus, Journal of Algorithms, No 5, 1984, pp. 391–398.Google Scholar
  6. [6]
    R.J. Lipton, R.E. Tarjan. A separator theorem for planar graphs, SIAM J. Appl. Math., Vol. 36, No 2, 1979, pp. 177–189.Google Scholar
  7. [7]
    R.J. Lipton, R.E. Tarjan. Applications of a planar separator theorem, SIAM J. Computing, Vol. 9, No 3, 1980, pp. 615–627.Google Scholar
  8. [8]
    G.L. Miller. Finding small simple cycle-separators for 2-connected planar graphs, J. of Comp. and System Science, Vol. 32, 1986, pp. 265–279.Google Scholar
  9. [9]
    S. Rao. Finding near optimal separators in planar graphs, In: Proc. 28-th Foundations of Computer Science, IEEE, 1987, pp. 225–237.Google Scholar
  10. [10]
    S.M. Venkatesan, Improved constants for some separator theorems, J. of Algorithms, Vol. 8, 1987, 572–578.Google Scholar
  11. [11]
    S.M. Venkatesan. On cleaving a planar graph, manuscript, 1987.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • Hristo N. Djidjev
    • 1
  1. 1.Center of Informatics and Computer Technology Bulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations