Bin-packing in 1.5 dimension

  • Sven-Olai Høyland
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 318)


We propose and motivate a new variant of the wellknown two-dimensional binpacking problem (orthogonal and oriented rectangle packing). In our model, we are allowed to cut a rectangle and move the parts horizontally. We describe two relatively simple algorithms for this problem and determine their asymptotic performance ratios. For the best algorithm, we show that this ratio is between 1.302... and 4/3.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Baker, B.S., Brown, D.J. and Katseff, H.P., A 5/4 algorithm for two-dimensional packing, J. of Algorithms, 2 (1981), p. 348–368.Google Scholar
  2. [2]
    Baker, B.S. and Coffman Jr., E.G., A tight asymptotic bound for next-fit-decreasing binpacking, SIAM J. Alg. Disc. Meth., 2 (1981), p. 147–152.Google Scholar
  3. [3]
    Baker, B.S., Coffman Jr., E.G. and Rivest, R.L., Orthogonal packings in two dimensions, SIAM J. Comput., 4 (1980), p. 846–855.Google Scholar
  4. [4]
    Baker, B.S. and Schwarz, J.S., Shelf algorithms for two-dimensional packing problems, SIAM J. Comput., 3 (1983), p. 508–525.Google Scholar
  5. [5]
    Coffman Jr., E.G., Garey, M.R. and Johnsen, D.S., Approximation algorithms for bin-packing — An updated survey, Technical report, AT&T Bell Laboratories, Murray Hill, New Jersey.Google Scholar
  6. [6]
    Coffman Jr., E.G., Garey, M.R., Johnsen, D.S. and Tarjan, R.E., Performance bounds for level-oriented two-dimensional packing algorithms, SIAM J. Comput., 4 (1981), p. 808–826.Google Scholar
  7. [7]
    Høyland, S.O., Kuttepakking — Ein ny pakkemodell, Hovudoppgåve i informatikk, Dept. of Informatics, University of Bergen (1985) (in Norwegian).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • Sven-Olai Høyland
    • 1
  1. 1.Department of InformaticsUniversity of BergenBergen

Personalised recommendations