An implicit binomial queue with constant insertion time

  • Svante Carlsson
  • J. Ian Munro
  • Patricio V. Poblete
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 318)


We introduce a new representation of a priority queue in an array such that the operation of insert can be performed in constant time and minimum extraction in logarithmic time. In developing this structure we first introduce a very simple scheme permitting insertions in constant amortized time. This is modified to achieve the worst-case behavior using roughly lg*n pairs of pointers, and finally this pointer requirement is removed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S. Carlsson, Heaps, doctoral dissertation, Department of Computer Science, Lund University, Lund, Sweden, CODEN: LUNFD6/ (NFCS-1003)/(1-70)/(1986)Google Scholar
  2. [2]
    M. J. Clancy and D. E. Knuth, A programming and problem-solving seminar, Technical report, Computer Science Department, School of Humanities and Science, Stanford University, STAN-CS-77-606, (April 1977)Google Scholar
  3. [3]
    E. E. Doberkat, Deleting the root of a heap, Acta Informatica, 17 (1982), 245–265Google Scholar
  4. [4]
    E. E. Doberkat, Inserting a new element into a heap, BIT, 21, (1981), 255–269Google Scholar
  5. [5]
    M. L. Fredman and R. E. Tarjan, Fibonacci heaps and their uses in improved network optimization algorithms, Proc. 25th Annual IEEE Symp. on Found. of Comput. Sci., (1984), 338–346Google Scholar
  6. [6]
    G. H. Gonnet and J. I. Munro, Heaps on heaps, SIAM J. on Comp. 15,4: 964–971, (Nov. 1986).Google Scholar
  7. [7]
    J. I. Munro and P. V. Poblete, Searchability in Merging and Implicit Data Structures, to appear in BIT.Google Scholar
  8. [8]
    Th. Porter and I. Simon, Random insertion into a priority queue structure, IEEE Trans. Software Engeneering, 1 SE (1975), 292–298Google Scholar
  9. [9]
    Th. Strothotte and J.-R. Sack, Heaps in heaps, Congressus Numerantium, 49 (1985), 223–235Google Scholar
  10. [10]
    R. E. Tarjan, Amortized computational complexity, SIAM J. Alg. Disc. Meth. 6 (1985), 306–318Google Scholar
  11. [11]
    J. W. J. Williams, Algorithm 232, CACM, 7(6) (June 1964), 347–348Google Scholar
  12. [12]
    J. Vuillemin, A data structure for manipulating priority queues, CACM, 21 (1978), 309–314Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • Svante Carlsson
    • 1
  • J. Ian Munro
    • 2
  • Patricio V. Poblete
    • 3
  1. 1.Department of Computer ScienceLund UniversityLundSweden
  2. 2.Department of Computer ScienceUniversity of WaterlooWaterlooCanada
  3. 3.Departamento de Ciencias de la ComputacionUniversidad de ChileSantiagoChile

Personalised recommendations