An overview of the firing squad synchronization problem

  • J. Mazoyer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 316)


Cellular Automaton Synchronization Time Finite Automaton Firing Time Synchronization Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

4 Bibliography

  1. [Ba.1]
    R. BALZER "Studies concerning minimal time solutions to the firing squad synchronization problem". Doctoral thesis. Carnegie Institute of Technology. Pittsburg (1966).Google Scholar
  2. [Ba.2]
    R. BALZER "An 8-states minimal time solution to the firing squad synchronization problem", Information and Control10, pp 22–42 (1967).Google Scholar
  3. [Be]
    J. BERSTEL "Quelques applications des réseaux d'automates à des problèmes de la théorie des graphes". Thèse de 3ième cycle. Faculté des sciences de Paris (1967).Google Scholar
  4. [Fi]
    P.C. FISHER "Generation of primes by a one-dimensionnal real-time Iterative Array". Journal A.C.M.12, no 3, pp 388–394 (1965).Google Scholar
  5. [He]
    G.T. HERMAN Models for cellular interactions in development without polarity of individual cells: Il problems of synchronization and regulation". Int. J. Systems Vol 3, no 2, pp 149–175 (1972).Google Scholar
  6. [He.Li]
    G.T. HERMAN-W. LIU "The daughter of CELIA, the French Flag and the Firing Squad". Simulation 21, pp 33–42 (1973).Google Scholar
  7. [He.etc]
    G.T. HERMAN-W. LIU-S. ROWLAND-A. WALKER "Synchronization of growing cellular automata". Information and Control 25, pp 103–122 (1974).Google Scholar
  8. [Gr]
    A. GRASSELLI "Synchronization of cellular arrays: The firing squad problem in two dimensions". Information and Control 28, pp 113–124 (1975).Google Scholar
  9. [Ko.1
    K. KOBAYASHI "The firing squad synchronization problem for two dimensionnal arrays". Information and Control 34, pp 177–197 (1977).Google Scholar
  10. [Ko.2]
    K. KOBAYASHI "On the minimal firing time of the firing squad synchronization problem for polyautomata networks". Theorical Computer Science 7, pp 149–167 (1978).Google Scholar
  11. [Ko.3]
    K. KOBAYASHI "The firing squad synchronization problem for a class of polyautomata networks". Journal of computer and system sciences 17, pp300–318 (1978).Google Scholar
  12. [Le]
    V.I. LEVENSTEIN "Ob odnom metode reshenija zadachi sinkhronizatsii tsepi avtomatov za minimalnoe vremja". Problemy Peredachi Informatsii 1, 4 (1965).Google Scholar
  13. [Ma.1]
    J. MAZOYER "A six states minimal time solution to the firing squad synchronization problem". Thèse de Diplome de doctorat (1986) Université LYON 1.Google Scholar
  14. [Ma.2]
    J. MAZOYER "Solutions à coupures périodiques itérées du firing squad". To appear(1986).Google Scholar
  15. [Ma.3]
    J. MAZOYER "Solutions en temps minimal au firing squad avec un seul bit d'information échangé entre les cellules". To appear(1986).Google Scholar
  16. [Mi]
    M. MINSKY "Finite and infinite machines". Prentice Hall pp 28–29 et 282–283 (1967).Google Scholar
  17. [Mo]
    E.F. MOORE "Sequential machines, Selected papers". Addison Wesley Reading Mass." pp 213–214 (1964).Google Scholar
  18. [Mo.La]
    F.R. MOORE-G.G. LANGDON "A generalized firing sqad problem". Information and Control 12, pp 212–220 (1968).Google Scholar
  19. [Ni.Ho]
    Y. NISHITANI-N. HONDA "The firing squad synchronization problem". 1966 Research group on "Polyautomata, their structure and functions" pp 158–188 (1977).Google Scholar
  20. [Rom]
    F. ROMANI "Cellular automata synchronization". Information Sciences 10, pp 299–318 (1976).Google Scholar
  21. [Ro]
    P. ROSENSTIEHL "Existence d'automates capables de s'accorder bien qu'arbitrairement connectés et nombreux". International Computation Center Bull5, pp 245–261 (1966)Google Scholar
  22. [Ro.etc]
    P. ROSENSTIEHL-J.R. FIKSEL-A. HOLLIGER "Intelligent graphs: networks of finite automata capable of solving graph problems". Graph Theory and Computing (R.C. Read Ed) Academic Press. New-York pp 219–265 (1972)Google Scholar
  23. [Sh]
    I. SHINAHR "Two and three dimensionnal firing squad synchronization problems". Information and Control 24, pp 163–180 (1974).Google Scholar
  24. [Sz.1]
    H. SZWERINSKI "Zellularautomaten mit symmetrisher lokaler transformation". Ph.D.Thesis. Braunschweig (1982).Google Scholar
  25. [Sz.2]
    H. SZWERINSKI "Time optimal solution of the firing squad synchronization problem for n-dimensional rectangles with the general at an arbitrary position". Theoretical Computer Ssience 19, pp 305–320 (1982).Google Scholar
  26. [Sz.1]
    H. SZWERINSKI "Symmetrical one-dimensional cellular spaces". Information and Control 67, pp 163–172 (1985).Google Scholar
  27. [Va.etc]
    V.I. VASKHAVSKY-V.B. MARAKHOVSKY-V.A. PESCHANSKY "Synchronization of interacting automata". Mathematical Systems Theory 14, no 3 pp 212–230 (1969).Google Scholar
  28. [Wa]
    A. WAKSMAN "An optimum solution to the firing squad synchronization problem". Information and Control 9, pp 66–78 (1966).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • J. Mazoyer
    • 1
  1. 1.Université Lyon 1France

Personalised recommendations