Advertisement

Arrays, automata and groups — Some interconnections

  • Paul E. Schupp
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 316)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    R. Berger, The Undecidability of the Domino Problem, Memoirs Amer. Math. Soc. 66, Providence, 1966Google Scholar
  2. 2.
    A. Beardon, The Geometry of Discrete Groups, Springer-Verlag, Heidelberg, 1986Google Scholar
  3. 3.
    M. Gromov, Groups of polynomial growth and expending maps, Publ. IHES 53 (1981), pp. 53–78.Google Scholar
  4. 4.
    E.S. Golod and I.R. Shafarevitch, On towers of class fields, Izv. Akad. Nauk SSSR, ser. Math. 28 (1964), pp. 261–272.Google Scholar
  5. 5.
    W. Magnus, A. Karrass and D. Solitar, Combinatorial group theory, Wiley, New York, 1960.Google Scholar
  6. 6.
    J. Milnor, A note on curvature and the fundamental group, J. Diff. Geometry 2 (1968), pp. 1–7.Google Scholar
  7. 7.
    E.F. Moore, Machine models of self-reproduction, in Symposium Applied Math., vol. XIV, Amer. Math. Soc., Providence 1962, pp. 17–33.Google Scholar
  8. 8.
    D.E. Muller and P.E. Schupp, Groups, the theory of ends, and context-free languages, J. Comp. Sys. Sciences 26 (1983), pp. 295–310.Google Scholar
  9. 9.
    D.E. Muller and P.E. Schupp, Ends, pushdown automata and second-order logic, Theor. Comp. Science 37 (1985), pp. 51–75.Google Scholar
  10. 10.
    J. Myhill, The converse of Moore's Garden of Eden theorem, Proc. Amer. Math. Soc. 14 (1963), pp. 685–686.Google Scholar
  11. 11.
    P.S. Novikov and S.I. Adyan, On infinite periodic groups, I, II, III, Izv. Akad. Nauk SSSR, Ser. Mat. 32 (1968), pp. 209–236, 241–479, 709–731.Google Scholar
  12. 12.
    M. O. Rabin, Decidability of second-order theories and automata in infinite trees, Trans. Amer. Math. Soc. 141 (1969), pp. 1–35.Google Scholar
  13. 13.
    J. Reif and A.P. Sistta, A multiprocess network logic with temporal and spatial modalities, J. Comp. Sys. Sciences 30 (1985), pp. 41–53.Google Scholar
  14. 14.
    R.M. Robinson, Undecidability and nonperiodicity for tilings of the plane, Invent. Math. 12 (1971), pp. 177–209.CrossRefGoogle Scholar
  15. 15.
    A.P. Stolboushkin et M.A. Taitslin, Deterministic dynamic logic is weaker than dynamic logic, Information and Control 57 (1983), pp. 48–55.Google Scholar
  16. 16.
    John von Neumann, The theory of self-reproducing automata, (edited by A. Burks), University of Illinois Press, Urbana, 1966.Google Scholar
  17. 17.
    H. Wang, Proving theorems by pattern recognition II, Bell System Technical Journal 40 (1961), pp. 1–41.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • Paul E. Schupp
    • 1
  1. 1.University of Illinois, Université Paris 7USA

Personalised recommendations