Priority search trees in secondary memory (extended abstract)

  • Ch. Icking
  • R. Klein
  • Th. Ottmann
Graphs, Geometry And Data Structures
Part of the Lecture Notes in Computer Science book series (LNCS, volume 314)


In this paper we investigate how priority search trees can be adapted to secondary memory. We given an optimal solution for the static case, where the set of points to be stored is fixed. For the dynamic case we present data structures derived from B-trees and from a generalized version of red-black trees. The latter are interesting in the internal case, too, since they are better balanced than standard red-black trees, in that the ratio longest path/shortest path is smaller.


search trees B-tree red-black tree priority search tree secondary memory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [B72]
    R. Bayer, Symmetric Binary B-trees: Data Structure and Maintenance Algorithms, Acta Informatica, 1 (1972), pp. 290–306.CrossRefGoogle Scholar
  2. [BM72]
    R. Bayer, E. McCreight, Organization of Large Ordered Indexes, Acta Informatica, 1 (1972), pp. 173–189.CrossRefGoogle Scholar
  3. [E87]
    H. Edelsbrunner, Geometrics and Algorithmics — A Tutorial in Computational Geometry, Bulletin of the EATCS, 32 (1987), pp. 118–142.Google Scholar
  4. [GS78]
    L. J. Guibas, R. Sedgewick, A Dichromatic Framework for Balanced trees, 19th Annual IEEE Symposium. on Foundations of Computer Science, 1978, pp. 8–21.Google Scholar
  5. [H85]
    K. Hinrichs, The Grid File System: Implementation and Case Studies of Applications, Dissertation at the Swiss Federal Institute of Technology Zürich, ETH Zürich, 1985.Google Scholar
  6. [KNOW86]
    R. Klein, O. Nurmi, Th. Ottmann, D. Wood, Optimal Dynamic Solutions for Fixed Windowing Problems, Proceedings of the 2nd Annual Symposium on Computational Geometry, 1986, pp. 109–115, (to appear in Algorithmica).Google Scholar
  7. [Mc85]
    E. M. McCreight, Priority Search Trees, SIAM J. Comput., 14 (1985), pp. 257–276.CrossRefMathSciNetGoogle Scholar
  8. [Me84a]
    K. Mehlhorn, Data Structures and Algorithms 1: Sorting and Searching, EATCS Monographs on Theoretical Computer Science, Springer-Verlag, 1984.Google Scholar
  9. [Me84b]
    K. Mehlhorn, Data Structures and Algorithms 3: Multi-dimensional Searching and Computational Geometry, EATCS Monographs on Theoretical Computer Science, Springer-Verlag, 1984.Google Scholar
  10. [NHS84]
    J. Nievergelt, H. Hinterberger, K. C. Sevcik, The Grid File: An Adaptable Symmetric Multikey File Structure, ACM Transactions on Data Base Systems, 9(1) (1984), pp. 38–71.CrossRefGoogle Scholar
  11. [O82]
    H. J. Olivié, A New Class of Balanced Trees: Half Balanced Binary Search Trees, RAIRO Informatique Théorique, 16 (1982), pp. 51–71.Google Scholar
  12. [OS76]
    Th. Ottmann, H.-W. Six, Eine neue Klasse von ausgeglichenen Binärbäumen, Angewandte Informatik, 9 (1976), pp. 395–400.Google Scholar
  13. [T83]
    R. E. Tarjan, Updating a Balanced Search Tree in O(1) Rotations, Information Processing Letters, 16 (1983), pp. 253–257.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • Ch. Icking
    • 1
  • R. Klein
    • 1
  • Th. Ottmann
    • 1
  1. 1.Institut für InformatikUniversität FreiburgFreiburgWest-Germany

Personalised recommendations