Advertisement

Designing gamma-acyclic database schemes using decomposition and augmentation techniques

  • Dietmar Seipel
  • Detlev Ruland
Data Bases
Part of the Lecture Notes in Computer Science book series (LNCS, volume 314)

Abstract

There are several desirable design properties for relational database schemes, such as lossless join property (LJP), BCNF and 4NF property, and the recently introduced various degrees of acyclicity.

In this paper, a method is given for designing database schemes that enjoy these properties. This method is based on the decomposition algorithm of Fagin, cf. /Ul 82/, and on the surrogate concept, called L-augmentation, of Kandzia and Mangelmann, cf. /KaMa 80/. An L-augmentation suitably enlarges a relation scheme by additional attributes and fd's, such that the resulting relation scheme is ‘equivalent’ to the original one.

The method works for universal relation schemes containing fd's and mvd's. The initial universal relation scheme is changed dynamically by this design method. In each iteration, a surrogate and two new fd's are introduced, followed by a sequence of decomposition steps. The final result is an L-augmentation of the universal relation scheme and a lossless, γ-acyclic 4NF database scheme for the L-augmented relation scheme.

This method can be specialized, such that the number of relation schemes in the database scheme is linear in the number of original attributes.

Keywords

Extra Attribute Surrogate Concept Decomposition Algorithm Relation Scheme Database Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. /AuD'AtMos 84/.
    G. Ausiello, A. D'Atri, M. Moscarini: ‘Minimal Coverings of Acyclic Database Schemata', in ‘Advances in Database Theory, Vol. 2', ed.: H. Gallaire, J. Minker, J. Nicolas, Plenum Press, New York, 1984.Google Scholar
  2. /BeeFaMaiMeUlYa 81/.
    C. Beeri, R. Fagin, D. Maier, A. Mendelzon, J. Ullman, M. Yannakakis: ‘Properties of Acyclic Database Schemes', Proc. STOC 1981.Google Scholar
  3. /BeeFaMaiYa 83/.
    C. Beeri, R. Fagin, D. Maier, M. Yannakakis: ‘On the Desirability of Acyclic Database Schemes', JACM, vol. 30 (3), 1983.Google Scholar
  4. /BeeKi 86/.
    C. Beeri, M. Kifer: ‘Elimination of Intersection Anomalies from Database Schemes', JACM, vol. 33 (3), 1986.Google Scholar
  5. /BeeVa 81/.
    C. Beeri, M.Y. Vardi: ‘On the Properties of Join Dependencies', in ‘Advances in Database Theory, Vol. 1', ed.: H. Gallaire, J. Minker, J. Nicolas, Plenum Press, New York, 1981.Google Scholar
  6. /Be 76/.
    Ph. A. Bernstein: 'synthesizing Third Normal Form Relations From Functional Dependencies', ACM TODS, vol. 1 (4), 1976.Google Scholar
  7. /Bi 85/.
    J. Biskup: ‘Entwurf von Datenbankschemas durch schrittweises Umwandeln verbotener Teilstruckturen', Proc. GI-Conference ‘Entwurf von Informationssystemen', Tutzing, 1985.Google Scholar
  8. /BiBr 84/.
    J. Biskup, H. Brueggemann: ‘Towards Designing Acyclic Database Schemes', in: ‘Advances in Database Theory, Vol. 2', ed.: H. Gallaire, J. Minker, J. M. Nicolas, Plenum Press, New York, 1984.Google Scholar
  9. /BiDaBe 79/.
    J. Biskup, U. Dayal, Ph. A. Bernstein: 'synthesizing Independent Relation Schemes', Proc. ACM SIGMOD 1979.Google Scholar
  10. /D'AtMos 84/.
    A. D'Atri, M. Moscarini: ‘On the Recognition and Design of Acyclic Databases', ACM Proc. PODS 1984.Google Scholar
  11. /Fa 83a/.
    R. Fagin: ‘Acyclic Database Schemes: A Painless Introduction', Proc. CAAP'83, LNCS 159, 1983.Google Scholar
  12. /Fa 83b/.
    R. Fagin: ‘Degrees of Acyclicity for Hypergraphs and Relational Database Schemes', JACM, vol. 30 (3), 1983.Google Scholar
  13. /KaMa 80/.
    P. Kandzia, M. Mangelmann: ‘On Covering Boyce-Codd Normal Forms', Information Processing Letters, vol. 11 (4,5), 1980.Google Scholar
  14. /Kat 84/.
    H. Katsuno: ‘An Extension of Conflict-Free Multivalued Dependency Sets', ACM TODS, vol. 9 (2), 1984.Google Scholar
  15. /Lie 82/.
    Y. E. Lien: ‘On the Equivalence of Database Models', JACM, vol. 29 (2), 1982.Google Scholar
  16. /Mai 83/.
    D. Maier: ‘The Theory of Relational Databases', Computer Science Press, 1983.Google Scholar
  17. /Ru 85/.
    D. Ruland: ‘Modifications and Acyclic Decompositions of Relational Database Schemes', Ph.D. Thesis, University at Würzburg, 1985.Google Scholar
  18. /RuSei 86/.
    D. Ruland, D. Seipel: ‘Alpha-Acyclic Decompositions of Relational Database Schemes', ACM Proc. PODS 1986.Google Scholar
  19. /RuSei 87/.
    D. Ruland, D. Seipel: ‘Designing Alpha-Acyclic BCNF-Database Schemes', Proc. Mathematical Fundamentals of Database Systems MFDBS'87.Google Scholar
  20. /Sa 83/.
    D. Sacca: ‘On the Recognition of Coverings of Acyclic Database Hypergraphs', ACM Proc. PODS 1983.Google Scholar
  21. /Sa 85/.
    B. Sacca: ‘Closures of Database Hypergraphs', JACM, vol. 32 (4), 1985.Google Scholar
  22. /Sci 80/.
    E. Sciore: ‘Real-World Mvd's', Technical Report # 80/014, Dept. Comput. Science SUNY at Stony Brook, 1980.Google Scholar
  23. /Sei 85/.
    D. Seipel: ‘Entwurf azyklischer BCNF-Datenbankschemata', Diploma Thesis, University at Würzburg, 1985.Google Scholar
  24. /Sei 87/.
    D. Seipel: ‘Designing Gamma-Acyclic Database Schemes by Decomposition and L-Augmentation Techniques', Discussion Paper, University at Würzburg, 1987.Google Scholar
  25. /Ul 82/.
    J. D. Ullman: ‘Principles of Database Systems', Computer Science Press, 1982.Google Scholar
  26. /YuOz 86/.
    L.-Y. Yuan, Z. M. Ozsoyoglu: ‘Unifying Functional and Multivalued Dependencies for Relational Database Design', ACM Proc. PODS 1986.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • Dietmar Seipel
    • 1
  • Detlev Ruland
    • 1
  1. 1.Lehrstuhl für Informatik IUniversität WürzburgWürzburg

Personalised recommendations