Conditioning in possibility and evidence theories — A logical viewpoint —

  • Didier Dubois
  • Henri Prade
Invited Paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 313)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Nilsson N. Probabilistic logic. Artificial Intelligence, 28, 71–87, 1986.Google Scholar
  2. [2]
    Dubois D., Prade H. Possibilistic inference under matrix form. In: Fuzzy Logic in Knowledge Engineering (H. Prade, C.V. Negoita, eds.), Verlag TÜV Rheinland, Köln, 112–126.Google Scholar
  3. [3]
    Schay G. An algebra of conditional events. Journal of Mathematical, Analysis and Applications, 24, 334–344, 1968.Google Scholar
  4. [4]
    Stalnaker R. A theory of conditionals. In: Studies in Logical Theory (N. Rescher, ed.), Blackwell, Oxford, 1968. Also in Harper et al. (41–55, 1981).Google Scholar
  5. [5]
    Lewis D. Probabilities of conditionals and conditional probabilities. Phil. Rev., 85, 1976, 297–315. Also in Harper et al. (129–150, 1981).Google Scholar
  6. [6]
    Harper W.L., Stalnaker R., Pearce G. (eds.) Ifs. Conditionals, Belief, Decision, Chance and Time. Reidel, Dordrecht, 1981.Google Scholar
  7. [7]
    Calabrese P. An algebraic synthesis of the foundations of logic and probability. Information Sciences, 42, 187–237, 1987.Google Scholar
  8. [8]
    Goodman I.R., Nguyen H.T. Conditional objects and the modeling of uncertainties. To appear in: Fuzzy Computing (M.M. Gupta, T. Yamakawa, eds.), North-Holland, 1988.Google Scholar
  9. [9]
    Dubois D., Prade H. Théorie des Possibilités. Applications à la Représentation des Connaissances en Informatique. Masson, Paris. 2nd edition, 1987, 135–138 and 140–143.Google Scholar
  10. [10]
    Cox R.T. Probability, frequency and reasonable expectation. Amer. J. Phys., 14, 1–13, 1946.Google Scholar
  11. [11]
    Cheeseman P. In defense of probability. Proc. 1985 Inter. Joint Conf. on Artificial Intelligence, Los Angeles, 1002–1009, 1985.Google Scholar
  12. [12]
    Horvitz E.J., Heckerman D.E., Langlotz C.P. A framework for comparing alternative formalisms for plausible reasoning. Proc. Amer. Assoc. for Artificial Intelligence Conference (AAAI-86), Philadelphia, 210–214, 1986.Google Scholar
  13. [13]
    Heckerman D.E. An axiomatic framework for belief updates. Proc. AAAI Workshop on Uncertainty in Artificial Intelligence, Philadelphia, 123–128, 1986.Google Scholar
  14. [14]
    Schweizer B., Sklar A. Associative functions and abstract semigroups. Publ. Mathe. (Debrecen.) 10, 69–81, 1963.Google Scholar
  15. [15]
    Trillas E. Sobre funciones de negación en la teoría de conjuntos difusos. Stochastica, III, no 1, 47–59, 1979.Google Scholar
  16. [16]
    Zadeh L.A. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, 1, 3–28, 1978.Google Scholar
  17. [17]
    Shafer G. A Mathematical Theory of Evidence. Princeton University Press, New Jersey, 1976.Google Scholar
  18. [18]
    Kyburg H. Bayesian and non-Bayesian evidential updating. Artificial Intelligence, 31, 271–293, 1987.Google Scholar
  19. [19]
    Suppes P., Zanotti M. On using random relations to generate upper and lower probabilities. Synthese, 36, 427–440, 1977.Google Scholar
  20. [20]
    Hisdal E. Conditional possibilities: independence and non-interaction. Fuzzy Sets and Systems, 1, 283–297, 1978.Google Scholar
  21. [21]
    Smets P. Belief functions. In: Non-Standard Logics for Automated Reasoning (P. Smets, E.H. Mamdani, D. Dubois, H. Prade, eds.), Academic Press, New York, 253–286, 1988.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • Didier Dubois
    • 1
  • Henri Prade
    • 1
  1. 1.Laboratoire Langages et Systèmes InformatiquesUniversité Paul SabatierToulouse CédexFrance

Personalised recommendations