Fixed point theorems for fuzzy mappings

  • Liu Zuoshu 
  • Zheng Quan 
Fuzzy Mathematics
Part of the Lecture Notes in Computer Science book series (LNCS, volume 313)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    L.A. Zadeh, Fuzzy Sets, Inform. and Control, 8(1965), 338–353.Google Scholar
  2. [2]
    D. Butnariu, A fixed point theorem and its application to fuzzy games, Rev. Ronm. Math. Pures et Appl. XXIV(1979) 1424–1432.Google Scholar
  3. [3]
    D. Butnariu, Solution concepts for n-persons fuzzy games, in: M. Gupta, R. Ragade and R. Yager, Eds. Advances in Fuzzy set theory and applications (North-Holland, Amsterdam, 1979) 339–358.Google Scholar
  4. [4]
    D. Butnariu, Fixed point for fuzzy mappings, Fuzzy Sets and Systems, 7(1982) 191–207.Google Scholar
  5. [5]
    D. Butnariu, An existence theorem for possible solutions of a two-persons fuzzy game, Bull.Math.Soc. Sci.Math.R.S.Ronmanic, 23(71) 1(1979) 29–35.Google Scholar
  6. [6]
    S. Heilpern, Fuzzy mappings and fixed point theorem, J.Math.Anal. Appl. 83 (1981) 566–569.Google Scholar
  7. [7]
    Liu Zuoshu, Some properties in fuzzy set-valued mappings, Approximate Reasoning in Expert Systems, Ed. M.M.Gupta, A.Kandel, W.Bandler, J.B.Kiszka (North-Hollond), (1985) 253–267.Google Scholar
  8. [8]
    Zheng Quan, The Fixed Point Theorem of λ-Fuzzy Mapping, J.Hebei Normal University, Natural Science Edition, 2(1986), 25–32 (in Chinese).Google Scholar
  9. [9]
    Chang Shihsen, Concerning the further research of the common fixed point problems for the sequence of mappings, J.Sichuan University Natural Science Edition, (1981), 31–45 (in Chinese).Google Scholar
  10. [10]
    B. Fisher, Math.Japon. 5(1983) 639–646.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • Liu Zuoshu 
    • 1
  • Zheng Quan 
    • 1
  1. 1.Department of MathematicsWuhan University of TechnologyWuhanChina

Personalised recommendations