Optimality of right leaning trees

  • Herman Akdag
  • Bernadette Bouchon
Variable Length Coding
Part of the Lecture Notes in Computer Science book series (LNCS, volume 311)


Binary Tree Terminal Node Maximal Rank Balance Tree Complete Binary Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Akdag, H.: Performances of an algorithm constructing a nearly optimal binary tree, Acta Informatica 20, 183.Google Scholar
  2. [2]
    Akdag, H., Bouchon B.: Right leaning trees with a pseudo-huffmanian length, IEEE Int. Symposium. on Inform. Theory, Ann Arbor, 1986.Google Scholar
  3. [3]
    Darwiche, J.: Construction de questionnaires arborescents quasi-optimaux, Thèse de 3ème Cycle, Université Paris VI, 1985.Google Scholar
  4. [4]
    Johnsen, O.: On the redundancy of binary Huffman codes, IEEE Transactions on Inform. Theory 26, 2, 1980.Google Scholar
  5. [5]
    Gallager, R.G.: Variations on a theme by Huffman, IEEE Transactions on Inform, Theory 24, 6, 1978.Google Scholar
  6. [6]
    Garey, M.R., Graham R.L.: Performance Bounds on the splitting algorithm for binary testing, Acta Informatica 3, 1974.Google Scholar
  7. [7]
    Payne, R.W., Preece, D.A.: Identification keys and diagnostic tables, a review, J. Roy. Statis. Soc., Ser. A, 1980.Google Scholar
  8. [8]
    Picard C.F.: Graphs and questionnaires, North Holland, Amsterdam, 1980.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • Herman Akdag
    • 1
  • Bernadette Bouchon
    • 1
  1. 1.CNRS - LAFORIAUniversité Paris VI - Tour 45Paris Cédex 05France

Personalised recommendations