Advertisement

A lower bound on the minimum euclidean distance of trellis codes

  • Marc Rouanne
  • Daniel J. CostelloJr.
Decoding In Real Space
Part of the Lecture Notes in Computer Science book series (LNCS, volume 311)

Abstract

A lower bound on the minimum Euclidean distance of trellis codes is considered. The bound is based upon Costello's free distance bound for convolutional codes [1]. The bound is a random coding bound over the ensemble of nonlinear time-varying Euclidean trellis codes. We compare schemes using different signal constellations and mappings and apply the bound to particular trellis coded modulation (TCM) schemes such as Ungerboeck's [3] and Lafanechere and Costello's [4].

Keywords

Trellis-coded modulation minimum Euclidean distance random coding bound 

fr

Codes de treillis et modulation distance Euclidiennne minimale borne minorante 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. J. Costello, Jr., "Free Distance Bounds for Convolutional Codes", IEEE Trans. Inform. Theory, vol. IT-20, pp. 356–365, May 1974.Google Scholar
  2. [2]
    G. D. Forney, Jr., "Convolutional Codes II: Maximum Likelihood Decoding", Information and Control, vol. 25, pp. 222–266, July 1974.Google Scholar
  3. [3]
    G. Ungerboeck, "Channel Coding with Multilevel Phase Signals", IEEE Trans. Inform. Theory, vol. IT-28, pp. 55–67, Jan. 1982.Google Scholar
  4. [4]
    A. Lafanechere and D. J. Costello, Jr., "Multidimensional Coded PSK Systems Using Unit-Memory Trellis Codes", Proceedings Allerton Conf. on Communication, Control, and Computing, pp. 428–429, Monticello, IL, Sept. 1985.Google Scholar
  5. [5]
    A. R. Calderbank, J. E. Mazo, and V. K. Wei, "Asymptotic Upper Bounds on the Minimum Distance of Trellis Codes", IEEE Trans. Commun., vol. COM-33, no. 4, pp. 305–310, April 1985.Google Scholar
  6. [6]
    A. R. Calderbank, J. E. Mazo, and H. M. Shapiro, "Upper Bounds on the Minimum Distance of Trellis Codes", Bell Syst. Tech. J., vol. 62, pp. 2617–2646, Oct. 1983, part I.Google Scholar
  7. [7]
    H. Chernoff, "A Measure of Asymptotic Efficiency for Tests of a Hypothesis Based on a Sum of Observations," Ann. Math. Stat., vol. 23, pp. 493–507, 1952.Google Scholar
  8. [8]
    R. G. Gallager, "A simple Derivation of the Coding Theorem and Some Applications," IEEE Trans. Inform. Theory, vol. IT-11, pp. 3–18, Jan. 1965.Google Scholar
  9. [9]
    A. J. Viterbi, "Error Bounds for Convolutional Codes and an Asymptotically Optimum Decoding Algorithm," IEEE Trans. Inform. Theory, vol. IT-13, pp. 260–269, Apr. 1967.Google Scholar
  10. [10]
    G. D. Forney, Jr., R. G. Gallager, G. R. Lang, F. M. Longstaff, and S. U. Qureshi, "Efficient Modulation for Band-limited Channels", IEEE J. on Selected Areas in Communication, vol. SAC-2, no. 5, pp. 632–647, Sept. 1984.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • Marc Rouanne
    • 1
  • Daniel J. CostelloJr.
    • 1
  1. 1.Dept. of Elec. & Comp. Engr.Univ. of Notre DameNotre Dame

Personalised recommendations