Amelioration of the McWilliams-Sloane tables using geometric codes from curves with genus 1,2 or 3

  • Yves Driencourt
  • Jean Francis Michon
Coding And Algebraic Geometry
Part of the Lecture Notes in Computer Science book series (LNCS, volume 311)


Rational Point Binary Code Hyperelliptic Curve Concatenate Code Outer Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    BARG A.M., KATSMAN G.L., TSFASMAN M.A., Algebraic geometric codes got from curves of small genui, preprint.Google Scholar
  2. [2]
    DRIENCOURT Y., MICHON J.F., Elliptic codes over a field of characteristic 2, à paraître dans le J. of Pure and Applied Algebra.Google Scholar
  3. [3]
    GOPPA V.D., Algebraico-Geometric Codes, Izv. Akad. Nauk, S.S.S.R. 46 (1982), = Math. U.S.S.R. Izvestiya 21 (1983), 75–91.Google Scholar
  4. [4]
    GOPPA V.D., Codes and Information, Uspekhi Math. Nauk. 39:1 (1984) 77–120 = Russ. Math. Surveys 39:1 (1984), 87–141.Google Scholar
  5. [5]
    KATSMAN G.L., TSFASMAN M.A., VLADUT S.G., Modular curves and codes with a polynomial construction, IEEE Trans. Info. Theory 30 (1984), 353–355.Google Scholar
  6. [6]
    LEBRIGAND D., RISLER J.J., Algorithme de Brill-Noether et codage des codes de Goppa, preprint (Université Paris 6).Google Scholar
  7. [7]
    LITSYN S.N., TSFASMAN M.A., Algebraic geometric and number theoric packings of spheres in R N, Uspekhi Math. Nauk. 40 (1985) 185–186.Google Scholar
  8. [8]
    MAC-WILLIAMS F.J., SLOANE N.J.A., The theory of error-correcting codes, North-Holland, Amsterdam 1977.Google Scholar
  9. [9]
    SERRE J.P., Sur le nombre des points rationnels d'une courbe algébrique sur un corps fini, C.R. Acad. Sc. Paris 296 (1983) 397–402.Google Scholar
  10. [10]
    SERRE J.P., Nombre de points des courbes algébriques sur F q, Sém. Th. Nombres Bordeaux (1982–1983) exp.no22.Google Scholar
  11. [11]
    TSFASMAN M.A., On Goppa codes which are better than the Varshamov-Gilbert bound, Probl. Peredachi Info., 18 (1982), 3–6 = Probl. Info. Trans., 18 (1982), 163–166.Google Scholar
  12. [12]
    TSFASMAN M.A., VLADUT S.G., ZINK T., Modular curves, Shimura curves and Goppa codes, better than Varshamov-Gilbert bound, Math. Nachrichten 109 (1982), 21–28.Google Scholar
  13. [13]
    ZINOVIEV V.A., Generalized cascade codes, Probl. Peredachi Info. 12 (1976) 5–15 = Probl. Info. Trans., 12 (1976) 2–9.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • Yves Driencourt
    • 1
  • Jean Francis Michon
    • 2
  1. 1.Université Aix-Marseille II & C.I.R.M.France
  2. 2.Université Paris 7France

Personalised recommendations