Advertisement

Functional group assisted clathrate formation — Scissor-like and roof-shaped host molecules

  • Edwin Weber
  • Mátyás Czugler
Conference paper
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 149)

Abstract

A strategy has been developed for the design, synthesis, and testing of new clathrate hosts that possess relationship complementarity to specific guest-compounds.

The new approach starts from particular host geometries (related to scissors or a roof) and makes extensive use of functional group interactions between host and guest molecules allowing planned inclusion properties. Functional sensor groups are characterized as H-bond donors and/or acceptors of different strength. The crystalline supramolecular systems formed in this way are members of the new type of “coordinatoclathrates” (coordinative group assisted clathrates) which usually are more stable than the conventional clathrates. They form highly selectively, and are predictable within certain limits. Also, they provide insight into the elementary interactions of functional groups on which molecular recognition is generally based. For comparative studies, the corresponding apolar host analogues typical of van der Waals interactions are covered as well.

The article is devided into sections which put the emphasis of discussion either on chemical (Sects. 1–3) or on crystallographic aspects (Sect. 4). Section 5 shows points of contact between coordinatoclathrate formation and biochemical problems.

Keywords

Guest Molecule COOH Group Inclusion Compound Host Molecule Inclusion Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8 References

  1. 1.
    Hall, D. M., Turner, E. E.: J. Chem. Soc. 1955, 1242Google Scholar
  2. 2.
    Weber, E., Csöregh, I., Stensland, B., Czugler, M.: J. Am. Chem. Soc. 106, 3297 (1984)CrossRefGoogle Scholar
  3. 3.
    An experimental note of Ref. 1 only vaguely suggests possible “solvate formation”Google Scholar
  4. 4.
    Encyclopaedia Britannica USA, Instant Service Report R-1519, Britannica Centre, 310 South Michigan Ave, Chicago, IL 60604Google Scholar
  5. 5.
    Brown Jr., J. F.: Sci. Am. 207, 82 (1962)PubMedGoogle Scholar
  6. 6.
    Saenger, W.: Umschau 74, 635 (1974)Google Scholar
  7. 7.
    Atwood, J. L., Davies, J. E. D., MacNicol, D. D. (eds.): Inclusion Compounds, Vols. 1–3, London, Academic Press 19848) Google Scholar
  8. 8.
    Recent and most comprehensive representation of this topic. A complete reference list of monographies and reviews on clathrate compounds is found in Chapter 1 of Vol. 140 of this series (Molecular Inclusion and Molecular Recognition — Clathrates I)Google Scholar
  9. 9.
    Schlenk Jr., W.: Fortschr. Chem. Forsch. 2, 92 (1951)Google Scholar
  10. 10.
    Cramer, F.: Angew. Chem. 64, 437 (1952)Google Scholar
  11. 11.
    Takemoto, K., Sonoda, N. in: Vol. 2 of Ref. 7, p. 47Google Scholar
  12. 12.
    Smith, A. E.: Acta Crystallogr. 5, 224 (1952)Google Scholar
  13. 13.
    Giglio, E. in: Vol. 2 of Ref. 7, p. 207Google Scholar
  14. 14.
    Popovitz-Biro, R., Chang, H. C., Tang C. P., Shochet, N. R., Lahav, M., Leiserowitz, L.: Pure Appl. Chem. 52, 2693 (1980)Google Scholar
  15. 15.
    Powell, H. M. in: Non-stoichiometric Compounds, Mandelcorn, L. (ed.), New York-London, Academic Press 1964, p. 438Google Scholar
  16. 16.
    MacNicol, D. D. in: Vol. 2 of Ref. 7, p. 1Google Scholar
  17. 17.
    Bhatnagar, V. M.: Clathrate Compounds, New Delhi, S. Chand 1968, p. 16Google Scholar
  18. 18.
    Jeffrey, G. A. in: Vol. 1 of Ref. 7, p. 135Google Scholar
  19. 19.
    Weber, E., Josel, H.-P.: J. Incl. Phenom. 1, 79 (1983)Google Scholar
  20. 20.
    Hyatt, J. A., Duesler, E. N., Curtin, D. Y., Paul, I. C.: J. Org. Chem. 45, 5074 (1980); Rahman, A., van der Helm, D.: Cryst. Struct. Commun. 10, 731 (1981); Thierbach, D., Huber, F.: Z. Anorg. Allg. Chem. 477, 101 (1981); Mac, T. C. W.: J. Chem. Soc., Perkin Trans. 2, 1982, 1435; Mentzafos, D., Terzis, A., Filippakis, S. E.: Cryst. Struct. Commun. 11, 71 (1982); Pickering, M., Small, R. W. H.: Acta Crystallogr. B 38, 3161 (1982); Shiel, H. S., Hoard, L. G., Nordmann, C. E.: Acta Crystallogr. B 38, 2411 (1982)Google Scholar
  21. 21.
    “Fourth International Symposium on Inclusion Phenomena and Third International Symposium on Cyclodextrins”, July 20–25, 1986, Lancaster (cf. Coll. Abstr.)Google Scholar
  22. 22.
    Davies, J. E. D., Kemula, W., Powell, H. M., Smith, N. O.: J. Incl. Phenom. 1, 3 (1983)Google Scholar
  23. 23.
    Fischer, E.: Ber. Dtsch. Chem. Ges. 27, 2985 (1894)Google Scholar
  24. 24.
    Cram, D. J. in: Applications of Biochemical Systems in Organic Chemistry, Part II, Techniques of Chemistry, Vol. X, Jones, J. B., Sih, C. J., Perlman, D. (eds.), New York, Wiley Interscience 1976, p. 815Google Scholar
  25. 25.
    E.g. Allcock, H. R., Allen, R. W., Bissell, E. C., Smeltz, L. A., Teeter, M.: J. Am. Chem. Soc. 98, 5120 (1976); Löhr, H.-G., Vögtle, F., Schuh, W., Puff, H.: J. Chem. Soc., Chem. Commun. 1983, 924; Herbstein, F. H., Mak, T. C. W., Reisner, G. M., Wong, H. N. C.: J. Incl. Phenom. 1, 301 (1984)Google Scholar
  26. 26.
    Kitaigorodsky, A. I.: Order and Disorder in the World of Atoms, The Heidelberg Science Library, Vol. 3, New York, Springer Verlag 1967Google Scholar
  27. 27.
    Kitaigorodsky, A. I.: Molecular Crystals and Molecules, New York-London, Academic Press 1973Google Scholar
  28. 28.
    Kitaigorodsky, A. I.: Mixed Crystals, Berlin-Heidelberg-New York-Tokyo, Springer Verlag 1984Google Scholar
  29. 29.
    With reference to graphic arts, see: Die Welten des M. C. Escher, Hersching, Manfred Pawlak Verlagsgesellschaft 1971, 3rd ed.Google Scholar
  30. 30.
    Recent examples of host molecules with C2-symmetry from other laboratories: Chan, T. L., Mak, T. C. W., Trotter, J.: J. Chem. Soc., Perkin Trans. 2, 1980, 672; Mann, B. J., Paul, I. C., Curtin, D. Y.: J. Chem. Soc., Perkin Trans. 2, 1981, 1583; Zheng Huang, N., Mak, T. C. W.: J. Chem. Soc., Chem. Commun. 1982, 543; Bishop, R., Dance, I. G., Hawkins, S. C.: J. Chem. Soc., Chem. Commun. 1983, 889; Radcliffe, M. D., Gutiérrez, A., Blount, J. F., Mislow, K.: J. Am. Chem. Soc. 106, 682 (1984)Google Scholar
  31. 31.
    Baker, W., Gilbert, B., Ollis, W. D.: J. Chem. Soc. 1952, 1443Google Scholar
  32. 32.
    Grasselli, J. G. (ed.): Atlas of Spectral Data and Physical Constants for Organic Compounds, Cleveland, Ohio, The Chemical Rubber Co. 1973; see also Davies, J. E. D. in: Vol. 3 of Ref. 7, p. 37Google Scholar
  33. 33.
    Guest selectivity properties to this extent are out of the ordinary, cf. Ref. 7Google Scholar
  34. 34.
    Reichardt, C.: Solvent Effects in Organic Chemistry, Weinheim, Verlag Chemie 1979Google Scholar
  35. 35.
    Hall, D. M., Ridgewell, S., Turner, E. E.: J. Chem. Soc. 1954, 2498Google Scholar
  36. 36.
    Optically resolved compound, see: Mislow, K., Glass, M. A. W., O'Brien, R. E., Rutkin, P., Steinberg, D. H., Weiss, J., Djerassi, C.: J. Am. Chem. Soc. 84, 1455 (1962)Google Scholar
  37. 37.
    Weber, E., Ahrendt, J., Finge, S.: unpublished result (1986)Google Scholar
  38. 38.
    Pummerer, R., Prell, E., Riede, A.: Ber. Dtsch. Chem. Ges. 59, 2159 (1926)Google Scholar
  39. 39.
    Weil, K., Kuhn, W.: Helv. Chim. Acta 27, 1648 (1944); Barber, H. J., Gaimster, K.: J. Appl. Chem. 2, 565 (1952)Google Scholar
  40. 40.
    Cf. Akimoto, H., Yamada, S.: Tetrahedron 27, 5999 (1971)Google Scholar
  41. 41.
    Brass, K., Sommer, P.: Ber. Dtsch. Chem. Ges. 61, 997 (1928)Google Scholar
  42. 42.
    Koukotas, C., Schwartz, L. H.: J. Chem. Soc., Chem. Commun. 1969, 1400; see also Bell, F., Waring, D. H.: J. Chem. Soc. 1949, 2689Google Scholar
  43. 43.
    Haas, G., Prelog, V.: Helv. Chim. Acta 52, 1202 (1969)Google Scholar
  44. 44.
    Toda, F., Tanaka, K., Nagamatsu, S.: Tetrahedron Lett. 25, 4929 (1984); Toda, F., Tanaka, K., Mak, C. W.: Chem. Lett. 1984, 2085CrossRefGoogle Scholar
  45. 45.
    Bromobenzene solvate of optically resolved dimethylester of 16, see: Akimoto, H., Iitaka, Y.: Acta Crystallogr. B 25, 1491 (1969)Google Scholar
  46. 46.
    Schwenk, A.: Chem.-Ztg. 53, 335 (1929)Google Scholar
  47. 47.
    With current knowledge, possible clathrate formation of 22 with ethanol may be anticipated from the original synthetic description in Ref. 43Google Scholar
  48. 48.
    Czugler, M., Stezowski, J. J., Weber, E.: J. Chem. Soc., Chem. Commun. 1983, 154Google Scholar
  49. 49.
    Neupert-Laves, K., Dobler, M.: Helv. Chim. Acta 64, 1653 (1981)Google Scholar
  50. 50.
    Czugler, M., Weber, E., Ahrendt, J.: J. Chem. Soc., Chem. Commun. 1984, 1632Google Scholar
  51. 51.
    Mowry, D. T.: J. Am. Chem. Soc. 69, 573 (1947); Hurd, D. C., Tockman, A.: J. Am. Chem. Soc. 81, 116 (1959); Baumgartner, P., Hugel, G.: Bull. Soc. Chim. Fr. 1954, 1005; Walborskiy, H. M.: Helv. Chim. Acta 36, 1251 (1953)Google Scholar
  52. 52.
    Barnett, E. D. B., Goodway, N. F., Lawrence, C. A.: J. Chem. Soc. 1935, 1102; Scheibler, H., Scheibler, U.: Chem. Ber. 87, 379 (1954); see also Ref. 51Google Scholar
  53. 53.
    Bachmann, W. E., Scott, L. B.: J. Am. Chem. Soc. 70, 1458 (1948)Google Scholar
  54. 54.
    Bachmann, W. E., Cole, W.: J. Org. Chem. 4, 60 (1939); Johnson, W. K., Patton, T. L.: U.S. 2,938,049, May 24, 1960 [Chem. Abstr. 54, 19628i (1960)]Google Scholar
  55. 55.
    Figeys, H. P., Dralants, A.: Tetrahedron Lett. 28, 3031 (1972); Huebner, C. F.: Ger. Off. 1,914,998, Oct. 30, 1969 [Chem. Abstr. 72, 78769p (1970)]Google Scholar
  56. 56.
    Sakellarios, E., Kyrimis, T.: Ber. Dtsch. Chem. Ges. 57, 322 (1924); Wilson, K. R., Pincock, R. E.: J. Am. Chem. Soc. 97, 1474 (1975)Google Scholar
  57. 57.
    Maigrot, N., Mazaleyrat, J. P.: Synthesis 1985, 317; Tamao, K., Minato, A., Miyake, N., Matsuda, T., Kiso, Y., Kumada, M.: Chem. Lett. 1975, 133Google Scholar
  58. 58.
    Bergmann, F., Eschinazi, H. E., Neeman, M.: J. Org. Chem. 8, 179 (1943)Google Scholar
  59. 59.
    Ueji, S., Nakatsu, K., Yoshioka, H., Kinoshita, K.: Tetrahedron Lett. 23, 1173 (1982)Google Scholar
  60. 60.
    Badar, Y., Cheung King Ling, C., Cooke, A. S., Harris, M. M.: J. Chem. Soc. 1965, 1543Google Scholar
  61. 61.
    Kress, R. B., Duesler, E. N., Etter, M. C., Paul, I. C., Curtin, D. Y.: J. Am. Chem. Soc. 102, 7709 (1980)Google Scholar
  62. 62.
    Newman, M. S.: J. Am. Chem. Soc. 62, 1683 (1940)Google Scholar
  63. 63.
    Bell, F., Waring, D. H.: J. Chem. Soc. 1949, 267, 1579Google Scholar
  64. 64.
    Weber, E., Ahrendt, J., Czugler, M., Csöregh, I.: Angew. Chem. 98, 719 (1986); Angew. Chem., Int. Ed. Engl. 25, 746 (1986)Google Scholar
  65. 65.
    Dale, J.: Stereochemie und Konformationsanalyse, Weinheim, Verlag Chemie 1978Google Scholar
  66. 66.
    Clarkson, R. G., Gomberg, M.: J. Am. Chem. Soc. 52, 2881 (1930)CrossRefGoogle Scholar
  67. 67. (a)
    Czugler, M.: Transactions of the “Symposium on Molecular Structure: Chemical Reactivity and Biological Activity”, Beijing, China 1986, Oxford, University Press, to be published (1988)Google Scholar
  68. 67. (b)
    For example, a ternary aggregate was reported for a 32-related host compound [code ANTTCN in the Cambridge Crystallographic Database: 9,10-dihydro-9,10-ethanoanthracene-11,11,12,12-tetracarbonitrile-tetracyanoethylene complex methylene chloride solvate, 8(C20H10N4):(C6N4):2(CH2Cl2)]. See Karle, I. L., Fratini, A. V.: Acta Crystallogr. B 26, 596 (1970)Google Scholar
  69. 68.
    Crystal structure of 1,1′-binaphthyl-8,8′-dicarboxylic acid: Czugler, M., Weber, E.: Unpublished result (1985)Google Scholar
  70. 69.
    Crystal structure of bis-β-naphthol: Gridunova, G. V., Furmanova, N. G., Shklover, V. E., Struchkov, Yu. T., Ezhkov, Z. I., Chayanov, B. A.: Kristallografiya 27, 477 (1982)Google Scholar
  71. 70.
    Crystal structure of 2,2′-bis(hydroxymethyl)-1,1′-binaphthyl: Czugler, M., Csöregh, I., Weber, E.: Unpublished result (1984)Google Scholar
  72. 71.
    Csöregh, I., Czugler, M., Weber, E.: Transactions of the “Symposium on Molecular Structure: Chemical Reactivity and Biological Activity”, Beijing, China 1986, Oxford, University Press, to be published (1988)Google Scholar
  73. 72.
    Racemic 1,1′-binaphthyl: Kerr, K. A., Robertson, J. M.: J. Chem. Soc. B 1969, 1146Google Scholar
  74. 73.
    Optically active 1,1′-binaphthyl: Kuroda, R., Mason, S. F.: J. Chem. Soc., Perkin Trans. 2, 1981, 167. See also Ref. 61Google Scholar
  75. 74.
    Crystal structure of 9,9′-spirobifluorene: Csöregh, I., Czugler, M., Weber, E.: Unpublished result (1985)Google Scholar
  76. 75. (a)
    Recent literature on H-bonds: Taylor, R., Kennard, O.: Acc. Chem. Res. 17, 320 (1984)CrossRefGoogle Scholar
  77. 75. (b)
    Taylor, R., Kennard, O.: J. Am. Chem. Soc. 104, 5063 (1982) (C-H ... X type H-bonds)CrossRefGoogle Scholar
  78. 75. (c)
    Taylor, R., Kennard, O., Versichel, W.: ibid. 105, 5761 (1983)CrossRefGoogle Scholar
  79. 75. (d)
    Taylor, R., Kennard, O., Versichel, W.: ibid. 106, 244 (1984)CrossRefGoogle Scholar
  80. 75. (e)
    Taylor, R., Kennard, O., Versichel, W.: Acta Crystallogr. B 40, 280 (1984)Google Scholar
  81. 75. (f)
    Murray-Rust, P., Glusker, J. P.: J. Am. Chem. Soc. 106, 1018 (1984)CrossRefGoogle Scholar
  82. 75. (g)
    Berkovitch-Yellin, Z., Ariel, S., Leiserowitz, L.: J. Am. Chem. Soc. 105, 765 (1983)Google Scholar
  83. 76.
    Saenger, W.: Nature (London) 279, 343 (1979); Lindner, K., Saenger, W.: Acta Crystallogr. B 38, 203 (1982) and references thereinGoogle Scholar
  84. 77.
    Crystal structure of 1 with 1-propanol (2:1):Czugler, M., Weber, E.: Unpublished result (1983)Google Scholar
  85. 78.
    Clementi, E.: “Structure of water and counterions for nucleic acids in solution”, in: Structure and Dynamics: Nucleic Acids and Proteins, Clementi, E., Sarma, R. H. (eds.), New York, Adeline Press 1983Google Scholar
  86. 79.
    Crystal structure of the acetic acid inclusion of 1: Csöregh, I., Weber, E.: Unpublished result (1985)Google Scholar
  87. 80.
    Crystal structures of the 7 · pyridine (1:1), 7 · 2-(hydroxymethyl)-pyridine (1:1), and 7 · pyridine · acetic acid (1:1:1) aggregates: Csöregh, I., Czugler, M., Weber, E.: Unpublished results (1984)Google Scholar
  88. 81.
    Crystal structure of 13 · imidazole: Czugler, M., Weber, E.: Unpublished result (1985)Google Scholar
  89. 82.
    Csöregh, I., Sjögren, A., Czugler, M., Cserzö, M., Weber, E.: J. Chem. Soc., Perkin Trans. 2, 1986 507Google Scholar
  90. 83.
    Crystal structure of 25b · DMF (1:1): Czugler, M., Weber, E.: Unpublished result (1983)Google Scholar
  91. 84. (a)
    Bernstein, F. H., Marsh, R. E.: Acta Crystallogr. B 33, 2358 (1977)Google Scholar
  92. 84. (b)
    Bernstein, F. H., Kapon, M.: ibid. 34, 1608 (1978)Google Scholar
  93. 84. (c)
    Bernstein, F. H., Kapon, M., Wasserman, S. ibid. 34, 1613 (1978)Google Scholar
  94. 84. (d)
    Bernstein, F. H., Kapon, M.: ibid. 35, 1614 (1979)Google Scholar
  95. 85.
    Crystal structure of 20 · DMSO: Csöregh, I., Czugler, M., Weber, E.: Unpublished result (1985)Google Scholar
  96. 86.
    Csöregh, I.: Personal communication (1987)Google Scholar
  97. 87.
    Crystal structure of 41 · DMSO (1:2): Czugler, M., Csöregh, I., Weber, E., Ahrendt, J.: Unpublished result (1986)Google Scholar
  98. 88.
    Gold, V., Stahl, R., Wassef, W. N., Kuroda, R.: J. Chem. Soc., Perkin Trans. 2, 1986, 477Google Scholar
  99. 89.
    Neupert-Laves, K., Dobler, M.: Helv. Chim. Acta 64, 1653 (1981)Google Scholar
  100. 90.
    Crystal structures of 48 with benzene (1:1) and p-xylene (2:1): Czugler, M., Weber, E., Csöregh, I.: Unpublished results (1986)Google Scholar
  101. 91.
    Gavezzotti, A.: Personal communication (1985). See also Gavezzotti, A., Simonetta, M. in: Organic Solid State Chemistry? (Studies in Organic Chemistry, Vol. 32), Desiraju, G. R. (ed.), Amsterdam-New York, Elsevier 1987, p. 391Google Scholar
  102. 92.
    Gridunova, G. V., Furmanova, N. G., Shklover, V. E., Struchkov, Yu. T., Ezhkova, B. A., Chayanov, B. A.: Kristallografiya, 27, 477 (1982)Google Scholar
  103. 93.
    Harata, K., Tanaka, J.: Bull. Chem. Soc. Jpn. 46, 2747 (1973)Google Scholar
  104. 94.
    Pauptit, R. A., Trotter, J.: Can. J. Chem. 61, 69 (1983)Google Scholar
  105. 95.
    Gridunova, G. V., Shklover, V. E., Struchkov, Yu. T., Chayanov, B. A.: Kristallografiya 28, 87 (1983)Google Scholar
  106. 96.
    Wells, J. L., Trus, B. L., Johnston, R. M., Marsh, R. E., Fritchie, C. J., Jr.: Acta Crystallogr. B 30, 1127 (1974)Google Scholar
  107. 97.
    Pauptit, R. A., Trotter, J.: Can. J. Chem. 59, 1149 (1981)Google Scholar
  108. 98.
    Pauptit, R. A., Trotter, J.: ibid. 59, 1149 (1981)Google Scholar
  109. 99.
    Fink, R., van der Helm, D.: Cryst. Struct. Commun. 9, 97 (1980)Google Scholar
  110. 100.
    Lehn, J.-M.: Science, 227, 849 (1985); Lehn, J.-M.: Angew. Chem. 100, 91 (1988); Angew. Chem., Int. Ed. Engl. 27, 89 (1988)Google Scholar
  111. 101.
    Cram, D. J.: Angew. Chem. 98, 1041 (1986); Angew. Chem., Int. Ed. Engl. 25, 1039 (1986)Google Scholar
  112. 102.
    Lipscomb, W. N.: Acc. Chem. Res. 15, 232 (1982)Google Scholar
  113. 103.
    See Chapters 2 and 3 in Vol. 140 of this series (Molecular Inclusion and Molecular Recognition — Clathrates I)Google Scholar
  114. 104.
    For a comprehensive review of the packing modes of aliphatic carboxylic acids, see: Leiserowitz, L.: Acta Crystallogr. B 32, 775 (1976)Google Scholar
  115. 105.
    On the symmetry of self-complementary surfaces, see e.g.: Morgan, R. S., Miller, S. L., McAdon, J. M.: J. Mol. Biol. 127, 31 (1979)PubMedGoogle Scholar
  116. 106.
    Gavezzotti, A.: J. Am. Chem. Soc. 105, 5220 (1983)Google Scholar
  117. 107.
    Sturtevant, J. M.: Proc. Natl. Acad. Sci. U.S.A. 74, 2236 (1977)PubMedGoogle Scholar
  118. 108.
    Recent examples of artificial enzyme models based on the β-cyclodextrin skeletonGoogle Scholar
  119. 108. (a)
    Breslow, R., Trainor, G., Ueno, A.: J. Am. Chem. Soc. 105, 2739 (1983)Google Scholar
  120. 108. (b)
    LeNoble, W. J., Srivastava, S., Breslow, R., Trainor, G.: ibid. 105, 2748 (1983)Google Scholar
  121. 108. (c)
    D'Souza, V. T., Hanabusa, K., O'Leary, T., Gadwood, R. C., Bender, M. L.: Biochem. Biophys. Res. Commun. 129, 727 (1985)PubMedGoogle Scholar
  122. 108. (d)
    Tabushi, I.: Acc. Chem. Res. 15, 66 (1982)Google Scholar
  123. 109.
    Cram, D. J., in: Chemistry for the Future, Grünewald, H. (ed.), Oxford—New York, Pergamon Press 1984Google Scholar
  124. 110.
    Cram, D. J., Katz, H. E.: J. Am. Chem. Soc. 105, 135 (1983)Google Scholar
  125. 111.
    Czugler, M., Ángyán, J. G., Náray-Szabó, G., Weber, E.: ibid. 108, 1275 (1986)Google Scholar
  126. 112.
    Addadi, L., Berkovitch-Yellin, Z., Weissbuch, I., van Mil, J., Shimon, L. J., Lahav, M., Leiserowitz, L.: Angew. Chem. 97, 476 (1985); Angew. Chem., Int. Ed. Engl. 24, 466 (1985)Google Scholar
  127. 113.
    Cf. the crystal structure of 15,15-bis(dodecyloxymethyl) [16] crown-5 · NaSCN. This complex has a density almost identical with that of water (D c=1.02 g cm−3): Czugler, M., Weber, E., Kálmán, A., Stensland, B., Párkányi, L.: Angew. Chem. 94, 641 (1982); Angew. Chem., Int. Ed. Engl. 21, 627 (1982)Google Scholar
  128. 114.
    Eigen, M.: Angew. Chem. 75, 489 (1963)Google Scholar
  129. 115.
    Matthews, D. A., Alden, R. A., Birktoft, J. J., Freer, S. T., Kraut, J.: J. Biol. Chem. 252, 8875 (1977)PubMedGoogle Scholar
  130. 116. (a)
    Kraut, J.: Annu. Rev. Biochem. 46, 331 (1977)PubMedGoogle Scholar
  131. 116. (b)
    Polgár, L., Halász, P.: Biochem. J. 207, 1 (1982), and references thereinPubMedGoogle Scholar
  132. 117.
    Some reports referring to the occurrence of two to four water molecules in the active site of such enzymes areGoogle Scholar
  133. 117. (a)
    Birktoft, J. J., Blow, D. M.: J. Mol. Biol. 68, 187 (1972)PubMedGoogle Scholar
  134. 117. (b)
    Bode, W., Schwager, P.: ibid. 98, 693 (1975)PubMedGoogle Scholar
  135. 118. (a)
    Sielecki, A. R., Hendrickson, W. A., Broughton, C. C., Delbaere, L. T. J., Brayer, G. D., James, M. N. G.: ibid. 134, 184 (1979)Google Scholar
  136. 118. (b)
    James, M. N. G., Sielecki, A. R., Brayer, G. D., Delbaere, L. T. J.: ibid. 144, 43 (1980)PubMedGoogle Scholar
  137. 119.
    Trypsinogen, the inactive proenzyme form of trypsin has no water molecules in its unordered “active site”; cf. Fehlhammer, H., Bode, W., Huber, R.: ibid. 111, 415 (1977)PubMedGoogle Scholar
  138. 120.
    Blevins, R. A., Tulinsky, A. J.: J. Biol. Chem. 260, 8865 (1985)PubMedGoogle Scholar
  139. 121.
    Hunkapiller, M. W., Forgac, M. D., Whitaker, D. R., Richards, J. H.: Biochemistry 12, 4732 (1973)PubMedGoogle Scholar
  140. 122.
    Cf. layering of water molecules in higher hydrates of HCl: Taesler, I.: Acta Univ. Upps. S91 (1981); Taesler, I., Lundgren, J.-O.: Acta Crystallogr. B 34, 2424 (1978)Google Scholar
  141. 123.
    Meot-Ner (Mautner) M.: J. Am. Chem. Soc. 106, 1257 (1984); Meot-Ner (Mautner) M.: Acc. Chem. Res. 17, 186 (1984)Google Scholar
  142. 124.
    Coordinates of the SGPA active site residue and of the two water molecules W184 and W210 are from a further refinement of the published (1.8 Å resolution) structure (Ref. 118b) with a resolution extending beyond 1.7 Å for the native enzyme: James, M. N. G., Sielecki, A. R.: Private communications (1983, 1984)Google Scholar
  143. 125.
    Ángyán, J., Náray-Szabó, G.: J. Theor. Biol. 103, 349 (1983)PubMedGoogle Scholar
  144. 126.
    Shotton, D. M., White, N. J., Watson, H. C.: Cold Spring Harbor Symp. Quant. Biol. 36, 91 (1971)Google Scholar
  145. 127.
    The native SGPA crystals have been prepared from a phosphate buffered solution at a pH of 4.3 (cf. Ref. 118)Google Scholar
  146. 128. (a)
    Lengyel, S., Conway, B. E. in: Comprehensive Treatise of Electrochemistry, Vol. 5, Conway, B. E., Bockhus, J. O. M., Yeager, E., (eds.), New York, Plenum Press 1983Google Scholar
  147. 128. (b)
    Wang, J. H.: Proc. Natl. Acad. Sci. U.S.A. 66, 874 (1970)PubMedGoogle Scholar
  148. 128. (c)
    Ángyán, J., Allavena, M., Picard, M., Potier, A., Tapia, O.: J. Chem. Phys. 77, 4723 (1982)Google Scholar
  149. 129.
    Zielinski, T. J., Poirier, R. A., Peterson, M. R., Csizmadia, I. G.: J. Comput. Chem. 4, 419 (1983)Google Scholar
  150. 130.
    Field, M. J., Hillier, I. H., Guest, M. F.: J. Chem. Soc., Chem. Commun. 1984, 1310Google Scholar
  151. 131. (a)
    Kossiakoff, A. A., Spencer, S. A.: Biochemistry 20, 6462 (1981)PubMedGoogle Scholar
  152. 131. (b)
    Stein, R. L.: J. Am. Chem. Soc., 105, 5111 (1983)Google Scholar
  153. 132.
    Aviram, A., Seiden, P., Ratner, M. A., in: Molecular Electronic Devices, Carter, F. L. (ed.), New York—Basel, Marcel Dekker 1983Google Scholar
  154. 133.
    Cf. Weber, E. in: Synthesis of Macrocycles — The Design of Selective Complexing Agents (Progress in Macrocyclic Chemistry, Vol. 3), Izatt, R. M., Christensen, J. J. (eds.), New York, Wiley 1987, p. 337Google Scholar
  155. 134.
    Sheppod, T. J., Petti, M. A., Dougherty, D. A.: J. Am. Chem. Soc. 108, 6085 (1986). See also Wilcox, C. S., Greer, L. M., Lynch, V.: ibid. 109, 1865 (1987)Google Scholar
  156. 135.
    Dugas, H., Penney, C.: Bioorganic Chemistry, New York, Springer-Verlag 1981; Green, B. S., Ashani, Y., Chipman, D. (eds.): Chemical Approaches to Understanding Enzyme Catalysis, Amsterdam—New York, Elsevier 1982Google Scholar
  157. 136.
    Czugler, M.: Unpublished results (1986)Google Scholar
  158. 137.
    Jacques, J., Collet, A., Wilen, S. A.: Enantiomers, Racemates, and Resolutions, New York, Wiley-Interscience 1981Google Scholar
  159. 138.
    J. Scheffer (ed.): Organic Chemistry in Anisotropic Media (Tetrahedron Symposia-in-Print, Number 29), Tetrahedron 43, 1197 (1987); Desiraju, G. R. (ed.): Organic Solid State Chemistry (Studies in Organic Chemistry, Vol. 32), Amsterdam—New York, Elsevier 1987Google Scholar
  160. 139.
    Davies, I. K.: CHEM X, a program system for manipulating and displaying molecules, Chemical Design Ltd., UK., Oct. 1986Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Edwin Weber
    • 1
  • Mátyás Czugler
    • 2
  1. 1.Institut für Organische Chemie und Biochemie der Universität BonnBonn-1FRG
  2. 2.Central Research Institute of ChemistryHungarian Academy of SciencesBudapestHungary

Personalised recommendations