Typechecking dependent types and subtypes

  • Luca Cardelli
Part 1: Invited Contributions
Part of the Lecture Notes in Computer Science book series (LNCS, volume 306)


Type System Dependent Type Record Type Multiple Inheritance Conversion Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Aiello 81]
    L. Aiello, G. Prini: An Efficient Interpreter for the Lambda-Calculus, Journal of Computer and System Sciences, 23,3 pp. 384–424, 1981.CrossRefGoogle Scholar
  2. [Burstall 84]
    R.Burstall, B.Lampson, A kernel language for abstract data types and modules, in Semantics of Data Types, Lecture Notes in Computer Science 173, Springer-Verlag, 1984.Google Scholar
  3. [Cardelli 85]
    L.Cardelli, P.Wegner: On understanding types, data abstraction and polymorphism, Technical Report No. CS-85-14, Brown University.Google Scholar
  4. [Cardelli 86]
    L. Cardelli: A polymorphic λ-calculus with Type:Type, Technical Report n.10, DEC Systems Research Center, May 1986.Google Scholar
  5. [Coquand 85]
    T.Coquand, G.Huet: Constructions: a higher order proof system for mechanizing mathematics, Technical report 401, INRIA, May 1985.Google Scholar
  6. [Girard 71]
    J-Y.Girard: Une extension de l'interprétation de Gödel a l'analyse, et son application à l'élimination des coupures dans l'analyse et la théorie des types, Proceedings of the second Scandinavian logic symposium, J.E.Fenstad Ed. pp. 63–92, North-Holland, 1971.Google Scholar
  7. [Harper 87]
    R.Harper, F.Honsell, G.Plotkin, A framework for defining logics, Proc. Symposium on Logic in Computer Science, Ithaca NY, June 22–25 1987, IEEE Computer Society Press, 1987.Google Scholar
  8. [Martin-Löf 73]
    P.Martin-Löf, An intuitionistic theory of types: predicative part, in Logic Colloquium III, F.Rose, J.Sheperdson ed. pp 73–118, North-Holland, 1973.Google Scholar
  9. [Martin-Löf 86]
    P.Martin-Löf, The type structure of intuitionistic type theory, lecture at the workshop on Foundations of Logic and Functional Programming, Trento, Italy, Dec. 1986.Google Scholar
  10. [Milner 78]
    R. Milner: A theory of type polymorphism in programming, Journal of Computer and System Science 17, pp. 348–375, 1978.CrossRefGoogle Scholar
  11. [Milner 84]
    R. Milner: A proposal for Standard ML, Proc. Symposium on Lisp and Functional Programming, Austin, Texas, August 6–8 1984, pp. 184–197. ACM, New York.Google Scholar
  12. [Mitchell 85]
    J.C.Mitchell, G.D. Plotkin: Abstract types have existential type, Proc. POPL 1985.Google Scholar
  13. [Reynolds 85]
    J.C. Reynolds: Three approaches to type structure; Mathematical Foundations of Software Development, Lecture Notes in Computer Science 185, Springer-Verlag, Berlin 1985, pp. 97–138.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • Luca Cardelli
    • 1
  1. 1.Digital Equipment CorporationSystems Research CenterPalo Alto

Personalised recommendations