Advertisement

Computable one-to-one enumerations of effective domains

  • Dieter Spreen
Part IV Domain Theory And Theoretical Computation
Part of the Lecture Notes in Computer Science book series (LNCS, volume 298)

Abstract

In this paper we consider ω-algebraic complete partial orders where the compact elements are not maximal in the partial order. Under the assumption that the compact elements admit a one-to-one enumeration such that the restriction of the order to them is completely enumerable, it is shown that the computable domain elements also can be effectively enumerated without repetition. Such computable one-to-one enumerations of the computable domain elements are minimal among all enumerations of these elements with respect to the reducibility of one enumeration to another. The admissible indexings which are usually used in computability studies of continuous complete partial orders are maximal among the computable enumerations. As it is moreover shown, admissible numberings are recursively isomorphic to the directed sum of a computable family of computable one-to-one enumerations. Both results generalize well known theorems by Friedberg and Schinzel, respectively, for the partial recursive functions. The proof uses a priority argument.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Egli, H. and R. L. Constable (1976), Computability concepts for programming language semantics, Theoret. Comp. Sci. 2, p. 133–145.CrossRefGoogle Scholar
  2. Eršov, Yu. L. (1972), Theorie der Numerierungen I, Zeitschr. f. math. Logik u. Grundl. d. Math. 19, p. 289–388.Google Scholar
  3. Friedberg, R. M. (1958), Three theorems on recursive enumeration. I. Decomposition. II. Maximal sets. III. Enumeration without duplication, J. Symb. Logic 23, p. 309–316.Google Scholar
  4. Kanda, A. (1980), Gödel Numbering of Domain Theoretic Computable Functions, Report Nr. 138, Dept. of Computer Science, University of Leeds.Google Scholar
  5. Kanda, A. and D. Park (1979), When are two effectively given domains identical? Theoretical Computer Science, 4th GI Conference, Aachen 1979 (Weihrauch, K. ed.), p. 170–181, Lec. Notes Comp. Sci. 67, Springer, Berlin.Google Scholar
  6. Khutoretski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{\imath }\), A. B. (1970), On the reducibility of computable enumerations, Algebra and Logic 8, p. 145–151.Google Scholar
  7. Kreitz, Ch. (1982), Zulässige cpo's, ein Entwurf für ein allgemeines Berechenbarkeitskonzept, Schriften zur Angew. Math. u. Informatik Nr. 76, RWTH Aachen.Google Scholar
  8. Mal'cev, A. I. (1970), Algorithms and Recursive Functions, Wolters-Noordhoff, Groningen.Google Scholar
  9. Pour-El, M. B. (1964), Gödel numberings versus Friedberg numberings, Proc. Amer. Math. Soc. 15, p. 252–256.Google Scholar
  10. Riccardi, G. A. (1980), The Independence of Control Structures in Abstract Programming Systems, PhD Thesis, State Univ. of Buffalo.Google Scholar
  11. Rogers, H. Jr. (1967), Theory of Recursive Functions and Effective Computability, McGraw-Hill, New York.Google Scholar
  12. Schinzel, B. (1977), Decomposition of Gödelnumberings into Friedbergnumberings, Zeitschr. f. math. Logik u. Grundl. d. Math. 23, p. 393–399.Google Scholar
  13. Sciore, E. and A. Tang (1978a), Admissible coherent c.p.o.'s, Automata, Languages and Programming (Ausiello, G and Böhm, C., eds.), p. 440–456, Lec. Notes Comp. Sci. 6, Springer, Berlin.Google Scholar
  14. Sciore, E. and A. Tang (1978b), Computability theory in admissible domains, 10th Annual Symp. on Theory of Computing, San Diego 1978, p. 95–104, Ass. Com. Mach., New York.Google Scholar
  15. Scott, D. S. (1970), Outline of a Mathematical Theory of Computation, Techn. Monograph PRG-2, Oxford Univ. Comp. Lab.Google Scholar
  16. Smyth, M. B. (1977), Effectively given domains, Theoret. Comp. Sci. 5, p. 257–274.CrossRefGoogle Scholar
  17. Weihrauch, K. and Th. Deil (1980), Berechenbarkeit auf cpo-s, Schriften zur Angew. Math. u. Informatik Nr. 63, RWTH Aachen.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • Dieter Spreen
    • 1
  1. 1.Dipartimento di InformaticaUniversita' di PisaPisaItaly

Personalised recommendations