A powerdomain construction

  • Karel Hrbacek
Part II Structure Theory Of Continuous Posets And Related Objects
Part of the Lecture Notes in Computer Science book series (LNCS, volume 298)


We show that the forgetful functor from the category of nondeterministic algebraic lattices into the category of algebraic lattices has a left adjoint. The construction provides an analog of the Plotkin powerdomain entirely within the category of algebraic lattices. Similar results hold for the category of bounded complete algebraic posets and the category of continuous lattices.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. GIERZ, G., HOFMANN, K.H., KIEMEL, K., LAWSON, J.D., MISLOVE, M., SCOTT, D.S., (1980), A Compendium of Continuous Lattices, Springer-Verlag, 371 pp.Google Scholar
  2. GRÄTZER, G. (1979), Universal Algebra, 2ndEd., Springer-Verlag, 581 pp.Google Scholar
  3. HENNESSY, M. and PLOTKIN, G.D. (1979), Full Abstraction for a Simple Parallel Programming Language, in: MFCS 79, ed. by J. Bečvář, LNCS vol. 74, Springer-Verlag 1979, pp. 108–120.Google Scholar
  4. HRBACEK, K. (1985), Powerdomains as Algebraic Lattices, in: ICALP 85, ed. by W. Brauer, LNCS vol. 194, Springer-Verlag 1985, pp. 281–289.Google Scholar
  5. HRBACEK, K. (1987), Convex Powerdomains, to appear in Information and Computation.Google Scholar
  6. PLOTKIN, G.D. (1976), A Powerdomain Construction, SIAM J. Comp. 5, pp. 452–486.CrossRefGoogle Scholar
  7. PLOTKIN, G.D. (1981), Unpublished 1981/82 Lecture Notes.Google Scholar
  8. SCOTT, D.S. (1981), Lectures on a Mathematical Theory of Computation, Oxford Univ. Computing Lab. Prog. Research Group — 19, 148 pp.Google Scholar
  9. SMYTH, M.B. (1978), Powerdomains, J. Comp. System Sci. 16, 23–36.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • Karel Hrbacek
    • 1
  1. 1.Department of MathematicsCity College of the City University of New YorkNew York

Personalised recommendations