A categorical treatment of polymorphic operations

  • John W. Gray
Part I Categorical And Algebraic Methods
Part of the Lecture Notes in Computer Science book series (LNCS, volume 298)


Natural Transformation Category Theory Identity Functor Natural Family Theoretical Computer Science 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Barr and C. Wells, Toposes, Triples and Theories, Springer-Verlag, New York, 1985.Google Scholar
  2. [2]
    J. Benabou, Introduction to Bicategories, Reports Midwest Category Seminar I, Lecture Notes in Mathematics 47, Springer-Verlag, New York, 1967.Google Scholar
  3. [3]
    S. Eilenberg and G. M. Kelly, Closed categories, in Proceedings of the Conference on Categorical Algebra, La Jolla, 1965, Springer-Verlag, New York, 1966.Google Scholar
  4. [4]
    J. W. Gray, Formal Category Theory: Adjointness for 2-Categories, Lecture Notes in Mathematics 391, Springer Verlag, New York, 1974.Google Scholar
  5. [5]
    J. W. Gray, Categorical aspects of data type constructors, Theoretical Computer Science, 141 (to appear).Google Scholar
  6. [6]
    P. Johnstone, Topos Theory, Academic Press, New York, 1977.Google Scholar
  7. [7]
    G. M. Kelly and R. Street, Review of the elements of 2-categories, in Category Seminar, Sydney 1972/73, Lecture Notes in Mathematics 420, Springer-Verlag, New York, 1974.Google Scholar
  8. [8]
    J. Lambek and P.J. Scott, Introduction to Higher Order Categorical Logic. Cambridge studies in advanced mathematics 7, Cambridge University Press, New York, 1986Google Scholar
  9. [9]
    S. Mac Lane, Categories for the Working Mathematician, Springer Verlag, New York, 1972.Google Scholar
  10. [10]
    B. Pareigis, Kategorien und Funktoren, B. G. Teubner, Stuttgart, 1969.Google Scholar
  11. [11]
    R. Seely, Locally cartesian closed categories and type theory, Math. Proc. Camb. Phil. Soc. 95 (1984), 33–48.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • John W. Gray
    • 1
  1. 1.University of Illinois at Urbana-ChampaignUrbana

Personalised recommendations