Supercomputing pp 611-628 | Cite as

Gaussian elimination on message passing architecture

  • M. Cosnard
  • B. Tourancheau
  • G. Villard
Session 6B: Parallel Numeric Methods
Part of the Lecture Notes in Computer Science book series (LNCS, volume 297)


Message Passing Gaussian Elimination Zero Element Communication Time Total Execution Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Bro]
    L. BROCHARD, Communication and control costs on loosely coupled multiprocessors, Preprint, Ecole Nationale des Ponts et Chaussées, 1986.Google Scholar
  2. [CDT]
    M. COSNARD, M. DAOUDI, B. TOURANCHEAU, Communication dans les Reseaux de Processeurs et Complexité d'Algorithmes, RR 636, IMAG Grenoble, 1986Google Scholar
  3. [CMRT]
    M. COSNARD, M. MARRAKCHI, Y. ROBERT, D. TRYSTRAM, Parallel Gaussian elimination on an MIMD Computer, to appear in Parallel ComputingGoogle Scholar
  4. [GVR]
    D. GANNON, J. VAN ROSENDALE, On the impact of communication in the design of parallel algorithms, IEEE T.C. 33, 12 (1984) 1180–1194Google Scholar
  5. [Gei]
    G.A. GEIST, Efficient parallel LU factorisation with pivoting on a hypercube multiprocessor, ORNL Preprint 6211 (1985)Google Scholar
  6. [GH]
    G.A. GEIST, M.T. HEATH, Parallel Cholesky factorisation on a hypercube multiprocessor, ORNL Preprint 6190 (1985)Google Scholar
  7. [Gen]
    W.M. GENTLEMAN, Some complexity results for matrix computations on parallel processors, JACM 25, 1 (1978), 112–115Google Scholar
  8. [GVL]
    G.H. GOLUB, C.F. VAN LOAN, Matrix Computations, The John Hopkins Univ. Press, 1983Google Scholar
  9. [Hoa]
    C.A.R. HOARE, Communicating Sequential Processes, Prentice Hall, Series in Computer Science (1985)Google Scholar
  10. [HB]
    K. HWANG, F. BRIGGS, Parallel Processing and Computer Architecture, Mc Graw Hill 1984Google Scholar
  11. [ISS]
    I.C.F. IPSEN, Y. SAAD, M.H. SCHULTZ, Complexity of dense linear system solution on a multiprocessor ring, Lin. Alg. Appl. (1986).Google Scholar
  12. [LKK]
    R.E. LORD, J.S. KOWALIK, S.P. KUMAR, Solving linear algebraic equations on an MIMD computer, J. ACM 30 (1), 1983, p 103–117Google Scholar
  13. [Row]
    D. ROWETH, Design and performance analysis of transputer arrays, J. Syst. Softw. 1,2 (1986) 21–22Google Scholar
  14. [Saa85]
    Y. SAAD, Communication complexity of the Gaussian elimination algorithm on multiprocessors, Research report 348, Computer Science Dpt., Yale University (1985)Google Scholar
  15. [Saa86]
    Y. SAAD, Gaussian elimination on hypercubes, in Parallel Algorithms and Architectures, Eds. M. Cosnard et all., North-Holland (1986) 5–18Google Scholar
  16. [SS]
    Y. SAAD, M.H. SCHULTZ, Topological properties of hypercubes, Research Report 389, Computer Science Dpt., Yale University (1985)Google Scholar
  17. [Sor]
    D.C. SORENSEN, Analysis of pairwise pivoting in Gaussian elimination, MCS-TM-26, Argonne National Laboratory, 1984Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • M. Cosnard
    • 1
  • B. Tourancheau
    • 1
  • G. Villard
    • 1
  1. 1.Algorithmique Parallèle et Calcul Formel CNRS, Laboratoire TIM3Institut National Polytechnique de GrenobleGrenoble Cedex

Personalised recommendations