Representations of groups over finite fields

  • Gerhard O. Michler
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 296)


Finite Group Conjugacy Class Splitting Field Character Table Finite Simple Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J.J. Cannon, An introduction to the group theory language CAYLEY. Computational Group Theory, ed. M. Atkinson, Academic Press, New York (1984), 145–183Google Scholar
  2. [2]
    J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker and R.A. Wilson, Atlas of finite groups. Clarendon Press, Oxford (1985)Google Scholar
  3. [3]
    C. W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras. Interscience Publishers, New York (1962)Google Scholar
  4. [4]
    W. Feit, The representation theory of finite groups. North Holland, Amsterdam (1982)Google Scholar
  5. [5]
    H. Gollan, Die 3-modularen Darstellungen der MathieuGruppen M11 und M12. Diplomarbeit, Universität Essen (1985)Google Scholar
  6. [6]
    H. Gollan and Th. Ostermann, Operations of class sums on permutation modules. In preparationGoogle Scholar
  7. [7]
    G. James, The modular characters of the Mathieu groups. J. Algebra 27 (1973), 57–111CrossRefGoogle Scholar
  8. [8]
    S. Lang, Algebra. Addison-Wesley, Reading Mass (1971)Google Scholar
  9. [9]
    G.W. Mackey, Unitary group representations in physics, probability and number theory. Benjamin, Reading, Massachusetts (1978)Google Scholar
  10. [10]
    G. Michler, Modular representation theory and the classification of finite simple groups. Proceedings of Symposia in Pure Mathematics 46 (1987), to appearGoogle Scholar
  11. [11]
    G. Michler, An algorithm for determining the simplicity of a modular group representation. PreprintGoogle Scholar
  12. [12]
    J. Neubüser, H. Pahlings and W. Plesken, CAS. Design and use of a system for the handling of characters of finite groups. Computational group theory, ed. M. Atkinson, New York (1984), 195–284Google Scholar
  13. [13]
    T. Okuyama, Some studies on group algebras. Hokkaido Mathematical Journal, 9 (1980), 217–221Google Scholar
  14. [14]
    R.A. Parker, The computer calculations of modular characters. (The meat-axe). In "Computational group theory". Academic Press, London (1984), 267–274Google Scholar
  15. [15]
    L. H. Rowen, Polynomial identities in ring theory. Academic Press (1980)Google Scholar
  16. [16]
    D. Shemesh, Common eigenvectors of two matrices. Linear algebra and its applications, 62 (1984), 11–18CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • Gerhard O. Michler
    • 1
  1. 1.Department of MathematicsEssen UniversityEssenFed. Rep. of Germany

Personalised recommendations