Advertisement

Factorisation of polynomials: Old ideas and recent results

  • J. A. Abbott
  • R. J. Bradford
  • J. H. Davenport
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 296)

Abstract

The problem of factorising polynomials: that is to say, given a polynomial with integer coefficients, to find the irreducible polynomials that divide it, is one with a long history. While the last word has not been said on the subject, we can say that the past 15 years have seen major break-throughs, and many computer algebra systems now include efficient algorithms for this problem. When it comes to polynomials with algebraic number coefficients, the problem is far harder, and several major questions remain to be answered. Nevertheless, the last few years have seen substantial improvements, and such factorisations are now possible.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Abbott & Davenport, 1987]
    Abbott,J.A. & Davenport,J.H., A Remark on a Paper by Wang: Another Surprising Property of 42. Submitted to Math. Comp.Google Scholar
  2. [Abbott & Davenport, 1987]
    [Abbott et al., 1985] Abbott, J.A., Bradford, R.J. & Davenport, J.H., A Remark on Factorisation. SIGSAM Bulletin 19 (1985) 2, pp. 31–33, 37.Google Scholar
  3. [Abbott & Davenport, 1987]
    [Abbott et al., 1986a] Abbott, J.A., Bradford, R.J. & Davenport, J.H., The Bath Algebraic Number Package. Proc. SYMSAC 86 (ACM, New York, 1986) pp. 250–253.Google Scholar
  4. [Berlekamp, 1967]
    Berlekamp, E.R., Factoring Polynomials over Finite Fields. Bell System Tech. J. 46 (1967) pp. 1853–1859.Google Scholar
  5. [Berlekamp, 1970]
    Berlekamp, E.R., Factoring Polynomials over Large Finite Fields. Math. Comp. 24 (1970) pp. 713–735.Google Scholar
  6. [Berwick, 1928]
    Berwick,W.E.H., Integral Bases. Cambridge Tracts in Mathematics and Mathematical Physics 22, C.U.P., 1928.Google Scholar
  7. [Bradford, 1987]
    Bradford, R.J., On the Computation of Integral Bases. PhD. Thesis, University of Bath.Google Scholar
  8. [Böffgen, 1987]
    Böffgen, R., Private communication. June 1987Google Scholar
  9. [Cantor & Zassenhaus, 1981]
    Cantor, D.G. & Zassenhaus, H., A New Algorithm for Factoring Polynomials over Finite Fields. Math. Comp. 36 (1981) pp. 587–592. Zbl. 493.12024. MR 82e:12020.Google Scholar
  10. [Collins, 1967]
    Collins, G.E., Subresultants and Reduced Polynomial Remainder Sequences. J. ACM 14 (1967) pp. 128–142.CrossRefGoogle Scholar
  11. [Collins, 1979]
    Collins, G.E., Factoring univariate integral polynomials in polynomial average time. Proc. EUROSAM 79 (Springer Lecture Notes in Computer Science 72, Springer-Verlag, Berlin-Heidelberg-New York) pp. 317–329. MR 81g:68064.Google Scholar
  12. [Ford, 1978]
    Ford,D.J., On the Computation of the Maximal order in a Dedekind Domain. Ph.D. Thesis, Ohio State University, 1978.Google Scholar
  13. [Kaltofen, 1985]
    Kaltofen,E., Sparse Hensel Lifting. Proc. EUROCAL 85, Vol. 2 (Springer Lecture Notes in Computer Science Vol. 204, Springer-Verlag, 1985) pp. 4–17.Google Scholar
  14. [Abbott & Davenport, 1987]
    [Kaltofen et al., 1981] Kaltofen, E., Musser, D.R. & Saunders, B.D., A Generalized Class of Polynomials That are Hard to Factor. Proc. SYMSAC 81 (ACM, New York, 1981) pp. 188–194. Zbl. 477.68041.Google Scholar
  15. [Abbott & Davenport, 1987]
    [Kaltofen et al., 1983] Kaltofen, E., Musser, D.R. & Saunders, B.D., A Generalized Class of Polynomials That are Hard to Factor. SIAM J. Comp. 12 (1983) pp. 473–483. CR 8405-0367 (Vol. 25 (1984) p. 235). MR 85a:12001.CrossRefGoogle Scholar
  16. [Landau, 1905]
    Landau, E., Sur Quelques Théorèmes de M. Petrovic Relatif aux Zéros des Fonctions Analytiques. Bull. Soc. Math. France 33 (1905) pp. 251–261.Google Scholar
  17. [Lenstra, 1982]
    Lenstra, A.K., Lattices and Factorization of Polynomials over Algebraic Number Fields. Proc. EUROCAM 82 [Springer Lecture Notes in Computer Science 144, Springer-Verlag, Berlin-Heidelberg-New York, 1982], pp. 32–39. Zbl. 495.68005.Google Scholar
  18. [Lenstra, 1983]
    Lenstra, A.K., Factoring Polynomials over Algebraic Number Fields. Proc. EUROCAL 83 [Springer Lecture Notes in Computer Science 162, Springer-Verlag, Berlin-Heidelberg-New York, 1983] pp. 245–254.Google Scholar
  19. [Lenstra, 1987]
    Lenstra, A.K., Factoring Multivariate Polynomials over Algebraic Number Fields. SIAM J. Comp. 16 (1987) pp. 591–598.CrossRefGoogle Scholar
  20. [Abbott & Davenport, 1987]
    [Lenstra et al., 1982] Lenstra, A.K., Lenstra, H.W., Jun. & Lovász, L., Factoring Polynomials with Rational Coefficients. Math. Ann. 261 (1982) pp. 515–534. Zbl. 488.12001. MR 84a: 12002.CrossRefGoogle Scholar
  21. [Mignotte, 1974]
    Mignotte, M., An Inequality about Factors of Polynomials. Math. Comp. 28 (1974) pp. 1153–1157. Zbl. 299.12101.Google Scholar
  22. [Mignotte, 1982]
    Mignotte, M., Some Useful Bounds. Symbolic & Algebraic Computation (Computing Supplementum 4) (ed. B. Buchberger, G.E. Collins & R. Loos) Springer-Verlag, Wien-New York, 1982, pp. 259–263. Zbl. 498.12019.Google Scholar
  23. [Musser, 1978]
    Musser, D.R., On the efficiency of a polynomial irreducibility test. J. ACM 25 (1978) pp. 271–282. MR 80m:68040.CrossRefGoogle Scholar
  24. [Trager, 1976]
    Trager, B.M., Algebraic Factoring and Rational Function Integration. Proc. SYMSAC 76 (ACM, New York, 1976) pp. 219–226. Zbl. 498.12005.Google Scholar
  25. [Trager, 1987]
    Trager,B.M., Private Communication. April 1987.Google Scholar
  26. [Vaughan, 1985]
    Vaughan, T.P., On Computing the Discriminant of an Algebraic Number Field. Math. Comp. 45 (1985) pp. 569–584.Google Scholar
  27. [Wang, 1976]
    Wang, P.S., Factoring Multivariate Polynomials over Algebraic Number Fields. Math. Comp. 30 (1976) pp. 324–336.Google Scholar
  28. [Abbott & Davenport, 1987]
    [Wang et al., 1982] Wang, P.S., Guy, M.J.T. and Davenport, J.H., P-adic Reconstruction of Rational Numbers. SIGSAM Bulletin 16 (1982) 2 pp. 2–3. Zbl. 489.68032.Google Scholar
  29. [Weinberger & Rothschild, 1976]
    Weinberger, P.J. & Rothschild, L.P., Factoring Polynomials over Algebraic Number Fields. ACM Transactions on Mathematical Software 2 (1976) pp. 335–350.CrossRefGoogle Scholar
  30. [Weyl, 1940]
    Weyl,H., Algebraic Theory of Numbers. Annals of Mathematics Studies 1, Princeton U.P., 1940.Google Scholar
  31. [Zassenhaus, 1972]
    Zassenhaus, H., On the Second Round of the Maximal Order Program. Applications of Number Theory to Numerical Analysis (ed. S.K. Zaremba), Academic Press, New York-London, 1972, pp. 389–431.Google Scholar
  32. [Zassenhaus, 1975]
    Zassenhaus, H., On Hensel Factorization. II. Symposia Mathematica 15 (1975) pp. 499–513.Google Scholar
  33. [Zassenhaus, 1980]
    Zassenhaus, H., On Structural Stability. Communications in Algebra 8 (1980) pp. 1799–1844.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • J. A. Abbott
    • 1
  • R. J. Bradford
    • 1
  • J. H. Davenport
    • 1
  1. 1.School of Mathematical SciencesUniversity of BathBathEngland

Personalised recommendations