On the computation of the Smith normat form

  • Heinz Lüneburg
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 296)


  1. [1]
    Bachem, A. & R. Kannan, Polynomial algorithms for computing the Smith and Hermite normal forms of an integer matrix. SIAM J. on Computing 8, 499–507 (1979).CrossRefGoogle Scholar
  2. [2]
    Chou, T. J. & G. E. Collins, Algorithms for the solution of systems of Linear Diophantine equations. SIAM J. on Computing 11, 687–708, (1982).CrossRefGoogle Scholar
  3. [3]
    Iliopoulos, C. S., Worst-case complexity bounds on algorithms for computing the canonical structure of finite abelian groups and the Hermite and Smith normal forms of an integer matrix. SIAM J. on Computing. Forthcoming.Google Scholar
  4. [4]
    Lüneburg, H., On a little but useful algorithm. In: Algebraic AL=gorithms and Error-Correcting Codes. Editor J. Calmet. Springer LNCS 229, 296–301 (1986).Google Scholar
  5. [5]
    Lüneburg, H., On the Rational Normal Form of Endomorphisms. A Primer to Constructive Algebra. Mannheim, Bibl. Institut 1987.Google Scholar
  6. [6]
    Lüneburg, H., On the Computation of the Smith Normal Form. Suppl. to ‘Rendiconti del Circolo Matematico di Palermo'. In print.Google Scholar
  7. [7]
    Smith, H. J. S., On systems of linear indeterminate equations and congruences. Phil. Trans. 151, 293–326 (1861). Coll. Math. Papers, vol. 1, 367–409.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • Heinz Lüneburg

There are no affiliations available

Personalised recommendations