Advertisement

Map OL-systems with edge label control: Comparison of marker and cyclic systems

  • Martin J. M. de Boer
  • Aristid Lindenmayer
Part II Technical Contributions
Part of the Lecture Notes in Computer Science book series (LNCS, volume 291)

Abstract

In this paper we discuss binary propagating map OL-systems (BPMOL systems). There are four classes of BPMOL systems, distinguished by the edge labelling that can be single or double and by edge insertion control that can be by markers or by byclic expressions. In this paper we are only concerned with deterministic BPMOL systems. In the first section we discuss the decidability of determinism of marker controlled BPMOL systems with single edge labelling. Furthermore we show for these systems that finiteness of the circular word languages is decidable and point out some relationships between the edge productions and the size of the circular word languages. We also show that their wall and edge growth functions are DOL growth functions. In the second section we compare the generative powers of deterministic marker controlled and cyclic controlled BPMOL systems with single edge labelling. It shows that the marker controlled systems are more powerful than the cyclic controlled ones.

Key words

map generating systems edge label control OL-systems cell division patterns edge growth functions wall growth functions deterministic derivations circular word languages 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Carlyle, J.W., S.A. Greibach and A. Paz, 1974. A two dimensional generating system modelling growth by binary cell division. Proc. 15th Annual Symp. on Switching and Automata Theory, New Orleans, IEEE Computer Sci., Long Beach, Calif., pp. 1–12.Google Scholar
  2. 2.
    Carlyle, J.W., S.A. Greibach and A. Paz, 1986. Planar map generation by parallel binary fission/fusion grammars. In: "The Book of L", G. Rozenberg and A. Salomaa, eds., Springer-Verlag, Berlin, pp. 29–43.Google Scholar
  3. 3.
    Lindenmayer, A. and G. Rozenberg, 1979. Parallel generation of maps: Developmental systems for cell layers. In: "Graph Grammars and Their Application to Computer Science and Biology", V. Claus, H. Ehrig and G. Rozenberg, eds., Lecture Notes in Computer Science, Springer-Verlag, Berlin, 73, pp. 301–316.Google Scholar
  4. 4.
    Siero, P.L.J., G. Rozenberg and A. Lindenmayer, 1982. Cell division patterns: Syntactical description and implementation. Computer Graphics and Image Processing 18, pp. 329–346.Google Scholar
  5. 5.
    De Does, M. and A. Lindenmayer, 1983. Algorithms for the generation and drawing of maps representing cell clones. In: "Graph grammars and Their Application to Computer Science 2nd intern. workshop", H. Ehrig, M. Nagl and G. Rozenberg, eds. Lecture Notes in Computer Science, Springer-Verlag, Berlin, 153, pp. 39–57.Google Scholar
  6. 6.
    Lück, J. and H.B. Lück, 1981. Proposition d'une typologie de l'organisation cellulaire des tissues végétaux. In: "Actes 1er sém. de l'Ecole de Biologie Théorique du CNRS-ENS," Paris, H. Le Guyader and T. Moulin, eds., ENSTA, Paris, pp. 335–371.Google Scholar
  7. 7.
    Lück, J. and H.B. Lück, 1982. Sur la structure de l'organisation tissulaire et son incidence sur la morphogenese. In: "Actes 2ème Sém. de l'Ecole de Biologie Théorique du CNRS," Solignac, H. Le Guyader, ed., pp. 361–416.Google Scholar
  8. 8.
    Lück, H.B. and J. Lück, 1986. Unconventional leaves (An application of map OL-systems to biology). In: "The Book of L", G. Rozenberg and A. Salomaa, eds., Springer-Verlag, Berlin, pp. 275–289.Google Scholar
  9. 9.
    Lück, J.,A. Lindenmayer and H.B. Lück, 1987. Analysis of cell tetrads and clones in meristematic cell layers (manuscript).Google Scholar
  10. 10.
    Nakamura, A., A. Lindenmayer and K. Aizawa, 1986. Some systems for map generation. In: "The Book of L", G. Rozenberg and A. Salomaa, eds., Springer-Verlag, Berlin, pp. 323–332.Google Scholar
  11. 11.
    Lindenmayer, A. A survey of parallel map generating systems, this volume.Google Scholar
  12. 12.
    Goebel, K., 1930. Organographie der Pflanzen, zweiter Teil, 3rd edition, Fischer-Verlag, Jena, p. 927.Google Scholar
  13. 13.
    Rozenberg, G. and A. Salomaa, 1980. The Mathematical Theory of L-systems, Academic Press, New York.Google Scholar
  14. 14.
    Gunning, B.E.S. and A.R. Hardham, 1982. Microtubules. Ann. Rev. Plant Physiol. 33, pp. 651–698.CrossRefGoogle Scholar
  15. 15.
    Lindenmayer, A., 1984. Models for plant tissue development with cell division orientation regulated by preprophase bands of microtubules. Differentiation 26: pp. 1–10.Google Scholar
  16. 16.
    Lindenmayer, A., 1987. Models for spatial orientation and temporal regulation of cell divisions in meristems. In: "Actes du Ve Sem. de l'Ecole de Biologie Théorique", Solignac, 1985, H.B. Lück, ed., Editions du C.N.R.S., Paris (in press).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • Martin J. M. de Boer
    • 1
  • Aristid Lindenmayer
    • 1
  1. 1.Theoretical Biology GroupUniversity of UtrechtUtrechtThe Netherlands

Personalised recommendations