Is parallelism already concurrency? Part 1: Derivations in graph grammars

  • Hans-Jörg Kreowski
Part II Technical Contributions
Part of the Lecture Notes in Computer Science book series (LNCS, volume 291)


The aim of this paper is to outline the support the theory of graph grammars offers to deal with parallelism and concurrency. The considerations in Part 1 are based on derivations in graph grammars (using a simple, but general framework). Sequentialization and parallelization of derivation steps are studied. From the point of view of concurrency, these constructions induce an equivalence on derivations. It turns out that each equivalence class is uniquely represented by a canonical derivation, which is minimal with respect to a delay index. Part 2 deals with a kind of non-sequential processes in graph grammars (overcoming the sequentiality of derivations).

Key words

graph grammars derivations parallelism concurrency canonical derivations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Boehm, H. Fonio, A. Habel: Amalgamation of Graph Transformations with Applications to Synchronization, LNCS 185, 267–285 (1985).Google Scholar
  2. 2.
    I. Castellani, U. Montanari: Graph Grammars for Distributed Systems, in [12], 20–38.Google Scholar
  3. 3.
    V. Claus, H. Ehrig, G. Rozenberg (eds.): Graph Grammars and Their Application to Computer Science and Biology, LNCS 73 (1979).Google Scholar
  4. 4.
    K. Culik II, A. Lindenmayer: Parallel Rewriting on Graphs and Multidimensional Development, Int. Journ. of Gen. Systems 3, 53–66 (1976).Google Scholar
  5. 5.
    P. Della Vigna, C. Ghezzi: Context-Free Graph Grammars, Inf. Contr. 37, 207–233 (1978).CrossRefGoogle Scholar
  6. 6.
    H. Ehrig: Introduction to the Algebraic Theory of Graph Grammars, in [3], 1–69.Google Scholar
  7. 7.
    -: Aspects of concurrency in graph grammars, in [12], 58–81.Google Scholar
  8. 8.
    H. Ehrig, H.-J. Kreowski: Church-Rosser Theorems Leading to Parallel and Canonical Derivations in Graph-Grammars, TU Berlin, Comp. Sci. Report 75-27 (1975).Google Scholar
  9. 9.
    -: Parallel Graph Grammars, in "Automata, Languages, Development", (eds. A. Lindenmayer and G. Rozenberg), Amsterdam, 425–442 (1976).Google Scholar
  10. 10.
    -: Applications of Graph Grammar Theory to Consistency, Synchronization and Scheduling in Data Base Systems, Inform. Syst. 5, 225–238 (1980).CrossRefGoogle Scholar
  11. 11.
    H. Ehrig, H.-J. Kreowski, A. Maggiolo-Schettini, B.K. Rosen, J. Winkowski: Transformations of Structures: An Algebraic Approach, Math. Syst. Theory 14, 305–334 (1981).CrossRefGoogle Scholar
  12. 12.
    H. Ehrig, M. Nagl, G. Rozenberg (eds.): Graph Grammars and Their Application to Computer Science (2nd Int. Workshop), LNCS 153 (1983).Google Scholar
  13. 13.
    H. Ehrig, M. Pfender, H.J. Schneider: Graph Grammars: An Algebraic Approach, Proc. of the IEEE Conf. on Automata and Switching Theory, Iowa City, 167–180 (1973).Google Scholar
  14. 14.
    H. Ehrig, B.K. Rosen: Commutativity of Independent Transformations on Complex Objects, IBM Research Report RC 6251 (1976).Google Scholar
  15. 15.
    -: Concurrency of Manipulation in Multidimensional Information Structures, LNCS 64, 165–176 (1978).Google Scholar
  16. 16.
    -: Commutativity, Parallelism and Concurrency for Transformations of Structures, TU Berlin, Comp. Sci. Report 79-21 (1979).Google Scholar
  17. 17.
    -: The Mathematics of Record Handling, SIAM J. COMPUT., Vol. 9, No. 3 (1980).Google Scholar
  18. 18.
    H. Ehrig, G. Rozenberg: Some Definitional Suggestions for Parallel Graph Grammars, in "Automata, Languages, Development", (eds. A. Lindenmayer and G. Rozenberg), Amsterdam, 443–468 (1976).Google Scholar
  19. 19.
    H. Ehrig, J. Staples: Church-Rosser properties for graph replacement systems with unique splitting, in [12], 82–101.Google Scholar
  20. 20.
    K.S. Fu: Syntactic Methods in Pattern Recognition, Academic Press, New York 1974.Google Scholar
  21. 21.
    H.J. Genrich, D. Janssens, G. Rozenberg, P.S. Thiagarajan: Petri nets and their relation to graph grammars, in [12], 115–129.Google Scholar
  22. 22.
    A. Habel: Concurrency in Graph-Grammatiken, TU Berlin, Comp. Sci. Report 80-11 (1980).Google Scholar
  23. 23.
    A. Habel, H.-J. Kreowski: Characteristics of graph languages generated by edge replacement, University of Bremen, Comp. Sci. Report 3/85 (1985), to appear in in Theoret. Comp. Sci.Google Scholar
  24. 24.
    B. Hoffmann: Modelling compiler generation by graph grammars, in [12], 159–171.Google Scholar
  25. 25.
    D. Janssens, H.-J. Kreowski, G. Rozenberg, H. Ehrig: Concurrency of Node-Label-Controlled Graph Transformations, University of Antwerp, Comp. Sci. Report 82-38 (1982).Google Scholar
  26. 26.
    D. Janssens, G. Rozenberg: On the structure of node-label-controlled graph grammars, Information Science 20, 191–216 (1980).CrossRefGoogle Scholar
  27. 27.
    H.-J. Kreowski: Manipulationen von Graphmanipulationen, Ph. D. Thesis, Comp. Sci. Dept., TU Berlin (1977).Google Scholar
  28. 28.
    -: Anwendungen der Algebraischen Theorie von Graph-Grammatiken auf Konsistenz und Synchronisation in Datenbanksystemen, Techn. Report 78-15, TU Berlin (1978).Google Scholar
  29. 29.
    -: A Comparison Between Petri-Nets and Graph Grammars, LNCS 100, 306–317 (1981).Google Scholar
  30. 30.
    -: Graph Grammar Derivation Processes, Proc. Graphtheoretic Concepts in Computer Science 1983, Trauner Verlag, Linz 1983, 136–150.Google Scholar
  31. 31.
    H.-J. Kreowski, A. Wilharm: Net Processes Correspond to Derivation Processes in Graph Grammars, Theoret. Comp. Sci. 44, 275–305 (1986).Google Scholar
  32. 32.
    B. Mayoh: Another Model for the Development of Multidimensional Organisms, in "Automata, Languages, Development" (eds. A. Lindenmayer, G. Rozenberg), Amsterdam 1976, 469–486.Google Scholar
  33. 33.
    B. Mahr, A. Wilharm: Graph Grammars as a Tool for Description in Computer Processed Control: A Case Study, Proc. Graphtheoretic Concepts in Computer Science 1982, Hanser Verlag, München/Wien 1982, 165–176.Google Scholar
  34. 34.
    A. Meier: A Graph-Relational Approach to Geographic Databases, in [12], 245–254.Google Scholar
  35. 35.
    U.G. Montanari: Separable Graphs, Planar Graphs and Web Grammars, Inf. Contr. 16, 243–267 (1970).CrossRefGoogle Scholar
  36. 36.
    R. Munz: Das WEB-Modell, Ph. D. Thesis, Comp. Sci. Dept., University of Stuttgart (1976).Google Scholar
  37. 37.
    M. Nagl: Graph Lindenmayer-Systems and Languages, Arbeitsber. d. Inst. f. Math. Masch. und Datenverar. 8,1, 16–63 (1975).Google Scholar
  38. 38.
    -: Graph-Grammatiken, Verlag Vieweg und Sohn, Braunschweig/Wiesbaden 1979.Google Scholar
  39. 39.
    P. Padawitz: Graph Grammars and Operational Semantics, Theoret. Comp. Sci. 19, 117–141 (1982).Google Scholar
  40. 40.
    J.L. Pfaltz, A. Rosenfeld: Web Grammars, Proc. Int. Joint Conf. Art. Intelligence, 609–619 (1969).Google Scholar
  41. 41.
    T. Pratt: Pair Grammars, Graph Languages and String-to-Graph Translations, Journ. Comp. Sci. 5, 560–595 (1971).Google Scholar
  42. 42.
    W. Reisig: A Graph Grammar Representation of Nonsequential Processes, LNCS 100, 318–325 (1981).Google Scholar
  43. 43.
    -: Petri Nets, An Introduction, Springer Verlag, Berlin/Heidelberg/New York/Tokyo 1985.Google Scholar
  44. 44.
    B.K. Rosen: A Church-Rosser Theorem for Graph Grammars, SIGACT News 7,3,26–31 (1975).CrossRefGoogle Scholar
  45. 45.
    A. Rosenfeld, D. Milgram: Web automata and web grammars, Machine Intelligence 7, 307–324 (1972).Google Scholar
  46. 46.
    H.J. Schneider: Chomsky-Systeme für partielle Ordnungen, Arbeitsber. d. Inst. f. Math. Masch. und Datenverar. 3,3 (1970).Google Scholar
  47. 47.
    -: Syntax-Directed Description of Incremental Compilers, LNCS 26, 192–201 (1975).Google Scholar
  48. 48.
    H.J. Schneider, H. Ehrig: Grammars on Partial Graphs, Acta Informatica 6, 297–316 (1976).CrossRefGoogle Scholar
  49. 49.
    A.C. Shaw: A Formal Description Schema as a Basis for Picture Processing Systems, Inf. Contr. 14, 9–52 (1969).CrossRefGoogle Scholar
  50. 50.
    A. Wilharm: Anwendung der Theorie von Graphgrammatiken auf die Spezifikation der Prozess-Steuerung von Eisenbahnsystemen, TU Berlin, Comp. Sci. Report 81-15 (1981).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • Hans-Jörg Kreowski
    • 1
  1. 1.Universität Bremen Fachbereich Mathematik und InformatikBremen 33

Personalised recommendations