Advertisement

On network algebras and recursive equations

  • Günter Hotz
  • Reiner Kolla
  • Paul Molitor
Part II Technical Contributions
Part of the Lecture Notes in Computer Science book series (LNCS, volume 291)

Abstract

By means of an example, we will present a description language for regular VLSI layouts. This language is a network calculus able to deal with recursive equations. These recursive equations can be understood as graph grammars. The solution of a recursive system of equations can be obtained by the iteration of a homomorphism of the net algebra. In a certain sense, the class of the layouts defined by a system of equations can also be understood as Lindenmayer-Rozenberg-system.

Key words

computer-aided design grammar types hardware description languages recursion schemes very large scale integration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7. References

  1. [BE85]
    B.Becker: “An easily testable optimal-time VLSI-multiplier” Proceedings of EUROMICRO 85, pp.401–411, Brussels, North-Holland.Google Scholar
  2. [BU86]
    H.Bühler: “Korrektheitsbeweise von rekursiv beschriebenen logisch-topologischen Netzen” Diplomarbeit, Saarbrücken 1986.Google Scholar
  3. [CADIC86a]
    G.Hotz, B.Becker, R.Kolla, P.Molitor: “Ein logischer-topologischer Kalkül zur Konstruktion von integrierten Schaltkreisen” INFORMATIK: Forschung und Entwicklung, 1986, Heft 1 und 2, Springer Verlag 1986.Google Scholar
  4. [CADIC86b]
    B.Becker, G.Hotz, R.Kolla, P.Molitor, H.G.Osthof: “CADIC: A System for Hierarchical Design of Integrated Circuits” TR07/1986, SFB124, Saarbrücken 1986.Google Scholar
  5. [CADIC87]
    B.Becker, G.Hotz, R.Kolla, P.Molitor, H.G.Osthof: “Hierarchical Design based on a Calculus of Nets” will appear in the Proceedings of the 24th Design Automation Conference, Miami 1987.Google Scholar
  6. [CF85]
    E. Clarke, Y. Feng: “ESCHER — A geometrical Layout System for Recursively Defined Circuits” CMU-CS-85-150, Carnegie-Mellon University, Pitsburgh 1985.Google Scholar
  7. [CL70]
    V.Claus: “Ebene Realisierungen von Schaltkreisen” Dissertation, Saarbrücken 1970.Google Scholar
  8. [HO65]
    G.Hotz: “Eine Algebraisierung des Syntheseproblems für Schaltkreise” EIK 1, 1965, pp.185–205, 209–231.Google Scholar
  9. [KM86]
    R.Kolla, P.Molitor: “A note on hierarchical layer-assignment” TR08/1986, SFB124, Saarbrücken 1986.Google Scholar
  10. [KO87a]
    R.Kolla: “Über Fragen im Zusammenhang mit der Spezifikation und Expansion großer logisch topologischer Netze” Dissertation, Saarbrücken 1987.Google Scholar
  11. [KO87b]
    R.Kolla: “Proving correctness of logic topological nets” will appear as technical report, SFB124, Saarbrücken 1987.Google Scholar
  12. [ME84]
    J. Messerschmidt: “Linguistische Datenverarbeitung mit COMSKEE” Stuttgart: B.G. Teubner 1984Google Scholar
  13. [MO85]
    P. Molitor: “Layer Assignment by Simulated Annealing” Microprocessing and Microprogramming 16 (1985), pp.345–350, North-Holland.CrossRefGoogle Scholar
  14. [MO86]
    P.Molitor: “Über die Bikategorie der logisch topologischen Netze und ihre Semantik” Dissertation, Saarbrücken 1986.Google Scholar
  15. [MO87]
    P.Molitor: “Free Net Algebras in VLSI-Theory” in preparation, Saarbrücken 1987.Google Scholar
  16. [SK60]
    J. Sklansky: “Conditional-sum addition logic” IRE-EC 9, pp.226–231, 1960.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • Günter Hotz
    • 1
  • Reiner Kolla
    • 1
  • Paul Molitor
    • 1
  1. 1.Fachbereich 10, Universität des SaarlandesSaarbrückenFRG

Personalised recommendations