Graphics and their grammars

  • L. Hess
  • B. H. Mayoh
Part II Technical Contributions
Part of the Lecture Notes in Computer Science book series (LNCS, volume 291)


Graphics are graphs with attributes at their vertices. Graphic grammars are natural extensions of graph and attribute grammars with rules that are attributed extensions of the “pushout” productions of graph grammars. The notion of graphic grammars is presented and various programming implementations will be discussed. Many motivating examples will be given, including

the development of biological organisms

the “semantic net” representation of expert system knowledge.


Graphs attributes grammars 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (BC).
    M. Bauderon, B. Courcelle: “An algebraic formalism for graphs”, in CAAP '86, Springer LNCS 214, 1986.Google Scholar
  2. (Bu).
    H. Bunke: “Graph Grammars as a Generative Tool in Image Understanding”, in Springer LNCS 153 (1983) 8–19.Google Scholar
  3. (EH).
    H. Ehrig: “Introduction to the algebraic theory of graph grammars (a survey)” in Springer LNCS 73 (1978) 1–64.Google Scholar
  4. (EHHB).
    H. Ehrig, A. Habel, U. Hummert, P. Boehm: “Towards algebraic datatype grammars: a junction between algebraic specifications and graph grammars”, Bull. EATCS 29 (1986) 22–27.Google Scholar
  5. (EKMRW).
    H. Ehrig, H.J. Kreowski, A. Maggiolo-Schettini, B.K. Rosen, J. Winkowski: “Transformations of structures: an algebraic approach”, Math. Sys. Th. 14 (1981) 305–334.CrossRefGoogle Scholar
  6. (G).
    H. Gottler: “Attributed Graph Grammars for Graphics”, in Springer LNCS 153 (1983) 130–142.Google Scholar
  7. (GS).
    E.H. Lockwood, R.H. Macmillan: Geometric Symmetry, Cambridge Univ. Press, 1978.Google Scholar
  8. (HM).
    R. Helm, K. Marriott: “Declarative Graphics”, in 3rd Int. Conf. Logic Programming. Springer LNCS 225 (1986).Google Scholar
  9. (Ka).
    R. Kalaba, J.L. Casti (eds.): “Numerical grid Generation”, Applied Math. Computation (1982) 1–895.Google Scholar
  10. (L).
    P. Lescanne: “Computer experiments with the REVE Term Rewriting Systems Generator”, Proc. 10th Symp. Pr. Prog. Lang. (1983) 99–108.Google Scholar
  11. (Li).
    G. Rozenberg, A. Salomaa (eds.): The Book of L, North-Holland 1986.Google Scholar
  12. (Ma).
    C.H. Macgillaray: Fantasy & Symmetry. The Periodic Drawings of M.C. Escher, Abrahs, N.Y. 1976.Google Scholar
  13. (N).
    M. Nagl: Graph-Grammatiken, Braunschweig, Vieweg, 1979.Google Scholar
  14. (Pa).
    P. Padawitz: “Graphgra mmars and operational semantics”, Th. Comp. Sci. 19 (1982) 117–141.Google Scholar
  15. (So).
    J.F. Sowa: Conceptual Structures, Addison-Wesley 1984.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • L. Hess
    • 1
  • B. H. Mayoh
    • 2
  1. 1.Instituto Militar de EngenhariaRio de JaneiroBrasil
  2. 2.Computer Science DepartmentAarhus UniversityAarhusDenmark

Personalised recommendations