Advertisement

Apex graph grammars

  • Joost Engelfriet
  • George Leih
  • Grzegorz Rozenberg
Part II Technical Contributions
Part of the Lecture Notes in Computer Science book series (LNCS, volume 291)

Abstract

Apex graph grammars are NLC-like graph grammars with the restriction that embedding edges are established between terminal nodes only. Some basic theoretical properties of these grammars are investigated.

Key words

neighbourhood controlled embedding regular tree grammars graph replacements nonterminal bounded nonterminal separation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Ber]
    J. Berstel; "Transductions and context-free languages", Teubner, Stuttgart, 1979.Google Scholar
  2. [EngLeiRoz]
    J.Engelfriet, G.Leih, G.Rozenberg; Apex graph grammars and attribute grammars; Report 87-04, Institute of Applied Math. and Computer Science, University of Leiden, March 1987.Google Scholar
  3. [GecSte]
    F. Gecseg, M. Steinby; "Tree automata", Akademiai Kiado, Budapest, 1984.Google Scholar
  4. [GinSpa]
    S. Ginsburg, E. Spanier; Derivation-bounded languages, JCSS 2 (1968), 228–250.Google Scholar
  5. [GurSud]
    E.M. Gurari, I.H. Sudborough; Improved dynamic programming algorithms for bandwidth minimization and the min-cut linear arrangement problem, J. of Algorithms 5 (1984), 531–546.CrossRefGoogle Scholar
  6. [JanRoz1]
    D. Janssens, G. Rozenberg; Restrictions, extensions, and variations of NLC grammars, Information Sciences 20 (1980), 217–244.CrossRefGoogle Scholar
  7. [JanRoz2]
    D. Janssens, G. Rozenberg; Graph grammars with neighbourhood-controlled embedding, Theor.Comp.Science 21 (1982), 55–74.CrossRefGoogle Scholar
  8. [JanRozVer]
    D. Janssens, G. Rozenberg, R. Verraedt; On sequential and parallel node-rewriting graph grammars, Computer Graphics and Image Processing 18 (1982), 279–304.CrossRefGoogle Scholar
  9. [Kau]
    M.Kaul; Syntaxanalyse von Graphen bei Präzedenz-Graph-Grammatiken, Dissertation, Universität Osnabrück, 1985.Google Scholar
  10. [Len]
    T. Lengauer; Upper and lower bounds on the complexity of the min-cut linear arrangement problem on trees, SIAM J. Alg. Disc. Meth. 3 (1982), 99–113.Google Scholar
  11. [Nag]
    M. Nagl; "Graph-Grammatiken", Vieweg, Braunschweig, 1979.Google Scholar
  12. [RozWel]
    G. Rozenberg, E. Welzl; Boundary NLC graph grammars — basic definitions, normal forms, and complexity, Inform. Contr. 69 (1986), 136–167.CrossRefGoogle Scholar
  13. [Wel]
    E. Welzl; Encoding graphs by derivations and implications for the theory of graph grammars, Proc. 11th ICALP, Lecture Notes in Computer Science 172, Springer-Verlag, Berlin, 1984, pp.503–513.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • Joost Engelfriet
    • 1
  • George Leih
    • 1
  • Grzegorz Rozenberg
    • 1
  1. 1.Dept. of Computer ScienceUniversity of LeidenLeidenThe Netherlands

Personalised recommendations