Bounded set theory and polynomial computability

  • V. Yu. Sazonov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 278)


Finite Resource Potential Feasibility Resource Bound Polynomial Time Computability Equl Valent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sazonov V.Yu. Bounded set theory and polynomial computability. (In Russian) Proc. Conf. Applied Logic, Novosibirsk 1985, 188–191.Google Scholar
  2. 2.
    Sazonov V.Yu. Polynomial computability and recursivity in finite domains. Elektronische Informationsverarbeitung und Kybernetik, 16, N7 (1980), 319–323.Google Scholar
  3. 3.
    Sazonov V.Yu. A logical approach to the problem "P=NP?". MFCS'80, Lect. Not. Comput. Sci. N88, 1980, 562–575.Google Scholar
  4. 4.
    Ershov Ju.L. Dynamic logic over admissible sets. Dokl. Akad. Nayk SSSR, 273, N5, 1983, 1045–1048.Google Scholar
  5. 5.
    Goncharov S.S., Sviridenko D.I. Σ-programming. (In Russian) Computing Systems, 107, Novosibirsk, 1985, 3–29.Google Scholar
  6. 6.
    Barwise J. Admissible sets and structures, Berlin, Springer, 1975.Google Scholar
  7. 7.
    Ershov Ju.L. Principle of Σ-enumeration. Dokl. Akad. Nauk SSSR, 270, N4, 1983, 786–788.Google Scholar
  8. 8.
    Sazonov V.Yu. Gandy theorem with predicate parameters. (In Russian) Proc. 8-th All Union Conf. on Math. Logic, Moscow, 1986, p. 167.Google Scholar
  9. 9.
    Sazonov V.Yu. Type-free calculus of Σ-expressions and Kripke-Platek theory with classes. (In Russian) Computing Systems, 116, Novosibirsk, 1986.Google Scholar
  10. 10.
    Sazonov V.Yu. Collection principle and existential quantifier. (In Russian) Computing Systems, 107, Novosibirsk, 1985, 30–39.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • V. Yu. Sazonov
    • 1
  1. 1.Institute of MathematicsNovosibirskUSSR

Personalised recommendations