The problem of minimal implicating vector

  • S. E. Kuznetsov
  • N. N. Nurmeev
  • F. I. Salimov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 278)


Greedy Algorithm Stochastic Matrix Stochastic Matrice Rational Element Finite Deterministic Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bukharaev R.G. Controlled generators of random numbers. Probabilistic method and Cibernetics, 2(1963), pp.68–87, (in Russian).Google Scholar
  2. 2.
    Davis A.C. Markov chains as randow input automata. Ann. Amer. Math. Monthly, vol. 68, 3(1961), pp.264–267.Google Scholar
  3. 3.
    Parchenkov N.Ja. A decomposition model of probabilistic automata. Construction controlling devices and systems (1974), pp.95–100. (in.Russian).Google Scholar
  4. 4.
    Bukharaev R.G. The foundations of the theory of probabilistic automata (1985) (in Russian).Google Scholar
  5. 5.
    Gabbasov N.Z. On finding minimal implicating vector. Probabilistic methods and Cibernetics 20(1984), pp.29–40 (in Russian).Google Scholar
  6. 6.
    Metra I.A. A note about minimal implicating vector for a stochastic matrix. Automatics and computer science 5(1970), pp.95–96, (in Russian).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • S. E. Kuznetsov
    • 1
  • N. N. Nurmeev
    • 1
  • F. I. Salimov
    • 1
  1. 1.Kazan universityKazanUSSR

Personalised recommendations