Information flow and width of branching programs

Extended abstract
  • S. P. Jukna
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 278)


Boolean Function Information Flow Boolean Network Minimal Program Polynomial Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Ajtai, L. Babai, P. Hajnal, J. Komlós, P. Pudlák, V. Rödl, E. Szemerédi and G. Turán, Two lower bounds for branching programs, Proc. 18-th ACM STOC (1986) 30–38.Google Scholar
  2. 2.
    D.A. Barrington, Bounded-width polynomial size branching programs recognize exactly those languages in NC1, Proc. 18-th ACM STOC (1986) 1–5 Google Scholar
  3. 3.
    A.K. Chandra, M.L. Furst and R.J. Lipton, Multiparty protocols, Proc. 15-th ACM STOC (1983) 94–99.Google Scholar
  4. 4.
    J.E. Hapcroft and R.M. Karp, An n5/2 algorithm for maximum maching in bipartite graphs, SIAM J. Comput. 2 (1973) 225–231.Google Scholar
  5. 5.
    S.P. Jukna, An entropic method of obtaining lower bounds for the complexity of Boolean functions, to appear in Dokl. Akad. Nauk SSSR (1987).Google Scholar
  6. 6.
    —, Lower bounds on the complexity of local circuits, Proc. 12-th Int. Symp. MFCS, LNCS 233 (1986) 440–448.Google Scholar
  7. 7.
    —, Entropy of Boolean networks and lower bounds on their complexity, to appear in Theoretical Computer Science.Google Scholar
  8. 8.
    O.B. Lupanov, On the synthesis of switching networks, Dokl. Akad. Nauk SSSR 119, n.1 (1958) 23–26.Google Scholar
  9. 9.
    P. Pudlák, A lower bound on the complexity of branching programs, Proc. 11-th Int. Symp. NFCS, LNCS 176 (1984) 480–489.Google Scholar
  10. 10.
    P.M. Spira, On time-hardware tradeoffs for Boolean functions, Proc. 4-th Hawaii Int. Symp. on System Sciences (1971) 525–527.Google Scholar
  11. 11.
    L.G. Valiant, The complexity of computing the permanent, Theoretical Computer Science 21 (1982) 181–201.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • S. P. Jukna
    • 1
  1. 1.Institute of MathematicsLithuanian Academy of SciencesVilniusUSSR

Personalised recommendations