Minimal numberings of the vertices of trees — Approximate approach

  • M. A. Iordanskii
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 278)


Internal Vertex Quadratic Assignment Problem Linear Arrangement Arrangement Algorithm Planar Numbering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Hanan and J.M. Kurtzberg, A review of the placement and quadratic assignment problems. SIAM Rev. 14,324–342(1972).Google Scholar
  2. 2.
    P.Z. Chinn, J. Chvatalova, A.K. Dewdney and N.E. Gibbs, The bandwidth problem for graphs and matrices — a survey. J. Graph Theory 6,223–254(1982).Google Scholar
  3. 3.
    M.K. Goldberg and I.A. Klipker, Minimal placing of trees on a line. Technical repot. Physico-Technical Institute of Low Temperatures, Academy of Sciences of Ukranian SSR, USSR(in Russian)(1976).Google Scholar
  4. 4.
    Y. Shiloach, A minimum linear arrangement algorithm for undirected trees. SIAM J. Comp. 8,15–32(1979).Google Scholar
  5. 5.
    F.R.K. Chung, On optimal linear arrangements of trees. Comp.& Maths. with Appls. 10,43–60(1984).Google Scholar
  6. 6.
    M.A. Iordanskii, Minimal planar arrangements of trees. Diskr. Anal. 33,3–30(in Russian)(1979).Google Scholar
  7. 7.
    M.A. Iordanskii, Minimal numberings of the vertices of trees. Sov. Math. Dokl. 15,1311–1315(1974).Google Scholar
  8. 8.
    M.A. Iordanskii, Minimal numberings of the vertices of trees. Problemy Kibernet. 31,109–131(In Russian)(1976).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • M. A. Iordanskii
    • 1
  1. 1.Gorky State Pedagogical InstituteGorkyUSSR

Personalised recommendations