Advertisement

On the complexity of Lie algebras

  • Hans F. de Groote
  • Joos Heintz
  • Stefan Möhler
  • Heinz Schmidt
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 278)

Keywords

Bilinear Mapping Double Centralizer Borel Subalgebra Finite Dimensional Vector Space Straight Line Program 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Goto, M. & Grosshans, F.D.: Semisimple Lie Algebras. M. Dekker, New York & Basel 1978.Google Scholar
  2. Greub, W.: Linear Algebra. 4th edition. GTM 23, Springer, New York 1981.Google Scholar
  3. de Groote, H.F.: On varieties of optimal algorithms for the computation of bilinear mappings. I. The isotropy group of a bilinear mapping. Theoret. Comput. Sci. 7 (1978) 1–24.Google Scholar
  4. de Groote, H.F.: Lectures on the Complexity of Bilinear Problems. LN Comput. Sci. 245, Springer, Berlin 1987.Google Scholar
  5. de Groote, H.F. & Heintz, J.: A lower bound for the bilinear complexity of some semisimple Lie algebras. in: Algebraic Algorithms and Error Correcting Codes. Proc. AAECC-3, Grenoble 1985. LN Comput. Sci. 229 (1986) 211–222.Google Scholar
  6. Humphreys, J.E.: Introduction to Lie Algebras and Representation Theory. 3rd printing revised. GTM 9, Springer, New York 1980.Google Scholar
  7. Mirwald, R.: The algorithmic structure of sl(2,k). in: Algebraic Algorithms and Error Correcting Codes. Proc. AAECC-3, Grenoble 1985. LN Comput. Sci. 229 (1986) 274–287.Google Scholar
  8. Strassen, V.: Vermeidung von Divisionen. J. Reine Angew. Math. 264 (1973) 184–202.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • Hans F. de Groote
    • 1
  • Joos Heintz
    • 1
    • 2
  • Stefan Möhler
    • 1
  • Heinz Schmidt
    • 1
  1. 1.Fachbereich MathematikJ.W. Goethe — UniversitätFrankfurt/Main 1F R G
  2. 2.Consejo Nacional de Investigaciones Cientificas y Técnicas (CONICET) Departamento de Matemáticas de laUniversidad Nacional de La PlataLa PlataArgentina

Personalised recommendations