The implicating vector problem and its applications to probabilistic and linear automata

  • N. Z. Gabbasov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 278)


Convex Combination Rational Vector Stochastic Matrice Partial Order Relation Deterministic Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Davis, A.S., Markov chains as random input automata. Amer.Math. Monthly,68(1961),no.3,264–267.Google Scholar
  2. 2.
    Buharajev, R.G., Verojatnostnyje avtomaty. Izdatel'stvo Kazanskogo universiteta, Kazan, 1977, p. 248. (Russian).Google Scholar
  3. 3.
    Metra,I.A., Zamečanija o minimal'nom implitsirujuščem vektore dlia stohastičesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{\imath }\) matritsy. AVT (1970), no.5, 95–96. (Russian).Google Scholar
  4. 4.
    Gabbasov, N.Z., O nahoždenii minimal'nogo implitsirujuščego, vektora. Verojatnostnyje metody i kibernetika, vypusk 20, izdatel stvo Kazanskogo universiteta, Kazan (1984), 29–40. (Russian).Google Scholar
  5. 5.
    Gabbasov,N.Z., O postrojenii minimal'nogo implitsirujuščego vektora dlia lineinyh avtomatov. Tezisy dokladov III Vsesojuznogo simpoziuma "Verojatnostnyje avtomaty i ih priloženija", Kazan (1983), 89. (Russian).Google Scholar
  6. 6.
    Gabbasov,N.Z., O minimal'nom implitsirujuščem vektore dlia lineinyh avtomatov. Verojatnostnyje avtomaty i ih priloženija, izdat. Kazanskogo universiteta, Kazan (1986), 78–83. (Russian).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • N. Z. Gabbasov
    • 1
  1. 1.Kazan State UniversityKazanUSSR

Personalised recommendations