Computational problems in alphabetic coding theory

  • M. Yu. Baryshev
  • L. P. Zhil'tzova
  • A. A. Markov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 278)


Regular Language Optimal Code Efficient Refinement Free Semigroup Multiple Pairing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Яблонский, С.В. [Jablonskii,S.V.] Введение в дискретную математику (Russian) [Introduction to discrete mathematics] "Nauka", Moscow, 1979.Google Scholar
  2. 2.
    Марков, А.А. [Markov,A.A.] Введение в теорию кодирован (Russian) [Introduction to coding theory] "Nauka", Moscow, 1982.Google Scholar
  3. 3.
    Markov, A.A., Smirnova, T.G. Algorithmic foundations of generalized prefix coding (Russian). Dokl.akad.Nauk SSSR, 274(1984), no.4,790–793.Google Scholar
  4. 4.
    Zhil'tzova, L.P. On alphabetic coding of context-free languages (Russian). Combinatorial-algebraic methods in applied mathematics, 106–122, Gorky Gos.Univ., 1983.Google Scholar
  5. 5.
    Baryshev, M.Yu. On analitical characterization of an optimal coding matrix for an elementary fragment-bounded language (Russian). Materials of Soviet seminar on discrete mathematics and its applications, 106–108, Mosc.Gos.Univ., Moscow,1986.Google Scholar
  6. 6.
    Moshkov, M.Yu. On a problem of minimizing of linear form on a finite set (Russian). Combinatorial-algebraic methods in applied mathematics, 98–119, Gorky Gos.Univ., Gorky,1985.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • M. Yu. Baryshev
    • 1
  • L. P. Zhil'tzova
    • 1
  • A. A. Markov
    • 1
  1. 1.Gorky State UniversityGorkyUSSR

Personalised recommendations