Theorem proving in intermediate and modal logics

  • M. V. Zakhar'yashchev
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 278)


Modal Logic Theorem Prove Natural Deduction Intermediate Logic Normal Modal Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chagrov, A.V. Polynomial finite approximability of modal and superintuitionistic logics. (Russian) Mathematical logic, mathematical linguistics and theory of algorithms, 75–83, Kalinin Gos. Univ., Kalinin, 1983.Google Scholar
  2. 2.
    Fine K. An incomplete logic containing S4. Theoria 40 (1974), no.23, 23–29.Google Scholar
  3. 3.
    Hosoi T., Ono H. Intermediate propositional logics (A survey) J. Tsuda Coll. 5 (1973), 67–82.Google Scholar
  4. 4.
    McKay, C.G. The decidability of certain intermediate propositional logics. J. Symbolic logic 33 (1968), no.2, 258–264.Google Scholar
  5. 5.
    Shekhtman, V.B. On incomplete propositional logics. Dokl. Akad. Nauk SSSR 235 (1977), no.3, 542–545.Google Scholar
  6. 6.
    Shekhtman, V.B. An undecidable superintuitionistic propositional calculus. Dokl. Akad. Nauk SSSR 240 (1978), no.3, 549–552.Google Scholar
  7. 7.
    Zakhar'yashchev, M.V. On intermediate logics. Dokl. Akad. Nauk SSSR 269 (1983), no.1, 18–22.Google Scholar
  8. 8.
    Zakhar'yashchev, M.V. Normal modal logics containing S4. Dokl. Akad. Nauk SSSR 275 (1984), no.3, 537–540.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • M. V. Zakhar'yashchev
    • 1
  1. 1.Keldysh Institute of Applied MathematicsAcademy of Sciences of the USSRMoscow

Personalised recommendations