Advertisement

Two-electron processes in ion-atom collisions — experiment

  • J. A. Tanis
Electron Correlations
Part of the Lecture Notes in Physics book series (LNP, volume 294)

Abstract

In an ion-atom collision, processes involving two electrons often compete with or contribute to the corresponding one-electron processes, making it important to isolate and identify these two-electron mechanisms in order to make detailed comparisons with theory. Four distinct two-electron processes occurring in single collisions are discussed, namely (a) two-electron capture, (b) two-electron loss from a projectile, (c) combined projectile electron loss and excitation, and (d) electron capture associated with additional target ionization. The importance of these two-electron processes compared to the relevant one-electron processes is considered, along with the question of whether independent-particle inte.ractions are dominant or whether electron-correlation effects must be taken into account in the description of these two-electron mechanisms.

Keywords

Transfer Ionization Electron Loss Single Capture Double Capture Transfer Ionization Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    See, for example, Proceedings of the Second US-Mexico Symposium on Atomic and Molecular Physics: Two-Electron Phenomena, C. Cisneros and T.J. Morgan, eds., Cocoyoc, Mexico, 1986: to be published.Google Scholar
  2. 2.
    J.A. Tanis, Proceedings of the US/Japan Seminar on Interactions of Highly Charged Ions in Ion-Atom Collisions, to be published in Nucl. Instrum. Methods Phys. Res. (1987).Google Scholar
  3. 3.
    See, for example, H.D. Betz, Rev. Mod. Phys. 44, 465 (1972).Google Scholar
  4. 4.
    J. Eichler and H. Narumi, Z. Phys. A295, 209 (1980), and references therein.Google Scholar
  5. 5.
    H. Knudsen, H.K. Haugen and P. Hvelplund, Phys. Rev. A23, 597 (1981).Google Scholar
  6. 6.
    A.S. Schlachter, J.W. Stearns, W.G. Graham, K.H. Berkner, R.V. Pyle and J.A. Tanis, Phys. Rev. A27, 3372 (1983).Google Scholar
  7. 7.
    W.G. Graham, K.H. Berkner, R.V. Pyle, A.S. Schlachter, J.W. Stearns and J.A. Tanis, Phys. Rev. A30, 722 (1984).Google Scholar
  8. 8.
    H. Tawara, P. Richard, K.A. Jamison, T.J. Gray, J. Newcomb and C. Schmiedekamp, Phys. Rev. A19, 1960 (1979).Google Scholar
  9. 9.
    R. Rippler, S. Datz, P.D. Miller, P.L. Pepmiller and P.F. Dittner, Phys. Rev. A35, 585 (1987).Google Scholar
  10. 10.
    J.A. Tanis, E.M. Bernstein, M.W. Clark, W.G. Graham, R.H. McFarland, T.J. Morgan, A. Muller, M.P. Stockli, K.H. Berkner, P. Gohil, A.S. Schlachter, J.W. Stearns, B.M. Johnson, K.W. Jones, M. Meron and J. Nason, Second US-Mexico Symposium on Atomic and Molecular Physics: Two-Electron Phenomena, Cocoyoc, Mexico, 1986: to be published.Google Scholar
  11. 11.
    M.W. Clark, E.M. Bernstein, J.A. Tanis, W.G. Graham, R.H. McFarland, T.J. Morgan, B.M. Johnson, K.W. Jones and M. Meron, Phys. Rev. A33, 762 (1986).Google Scholar
  12. 12.
    W.G. Graham, K.H. Berkner, E.M. Bernstein, M. Clark, R.H. McFarland, T.J. Morgan, A.S. Schlachter, J.W. Stearns, M.P. Stockli and J.A. Tanis, J. Phys. B18, 2503 (1985).Google Scholar
  13. 13.
    M.W. Clark, S.M. Shafroth, J. Swenson and D. Brandt; unpublished.Google Scholar
  14. 14.
    G.S. Khandelwal, B.-H. Choi and E. Merzbacher, At. Data 1, 103 (1969); B.-H. Choi, E. Merzbacher and G.S. Khandelwal, At. Data 5, 291 (1973).Google Scholar
  15. 15.
    For a one-electron ion ve = Zv, where vo is the Bohr velocity. For a multi-electron ion ve can be estimated from Ee = 1/2 me ve2 where Ee is the electron binding energy for the shell of interest, obtained, for example, from R.L. Kelley and D.E. Harrison Jr., At. Data 3, 177 (1971).Google Scholar
  16. 16.
    N. Bohr and J. Lindhard, K. Dan. Vidensk. Selsk. Mat.-Fys. Medd. 28, 1 (1954).Google Scholar
  17. 17.
    I.S. Dmitriev, Ya.M. Zhileikin and V.S. Nikolaev, Zh. Eksp. Teor. Fiz. 49, 500 (1965) [Sov. Phys. JETP 22, 352 (1966).Google Scholar
  18. 18.
    R.L. Becker, Nucl. Instrum. Methods Phys. Res. B24/25, 256 (1987).Google Scholar
  19. 19.
    W.G. Graham, E.M. Bernstein, M.W. Clark, J.A. Tanis, K.H. Berkner, R.J. McDonald, A.S. Schlachter, J.W. Stearns, R.H. McFarland, T.J. Morgan, A. Muller and M.P. Stockli, Nucl. Instrum. Methods Phys. Res. B23, 143 (1987).Google Scholar
  20. 20.
    A. Niehaus, Comments Atom. Mol. Phys. 9, 153 (1980).Google Scholar
  21. 21.
    C.L. Cocke, R. Dubois, T.J. Gray, E. Justiniano and C. Can, Phys. Rev. Lett. 46, 1671 (1981).Google Scholar
  22. 22.
    L.H. Andersen, M. Frost, P. Hvelplund, H. Knudsen and S. Datz, Phys. Rev. Lett. 52, 518 (1984).Google Scholar
  23. 23.
    J.A. Tanis, M.W. Clark, R. Price, S.M. Ferguson and R.E. Olson, Nucl. Instrum. Methods Phys. Res. B23, 167 (1987); J.A. Tanis, M.W. Clark, R. Price and R.E. Olson, Phys. Rev. A; to be published (1987).Google Scholar
  24. 24.
    R.E. Olson, A.E. Wetmore and M.L. McKenzie, J. Phys. B19, L629 (1986).Google Scholar
  25. 25.
    M.B. Shah and H.B. Gilbody, J. Phys. B18, 899 (1985).Google Scholar
  26. 26.
    R.D. DuBois, Phys. Rev. A33, 1595 (1986).Google Scholar
  27. 27.
    H. Damsgaard, H.K. Haugen, P. Hvelplund and H. Knudsen, Phys. Rev. A27, 112 (1983).Google Scholar
  28. 28.
    N. Stolterfoht, C.C. Havener, R.A. Phaneuf, J.K. Swenson, S.M. Shafroth and F.W. Meyer, Phys. Rev. Lett. 57, 74 (1986). The total single-capture cross section was obtained from D.H. Crandall, Phys. Rev. A16, 958 (1977).Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • J. A. Tanis
    • 1
  1. 1.Department of PhysicsWestern Michigan UniversityKalamazooUSA

Personalised recommendations