Advertisement

Classical treatments of the L-shell ionization probability at zero impact parameter

  • G. Lapicki
Classical Collisional Ionization
Part of the Lecture Notes in Physics book series (LNP, volume 294)

Keywords

Impact Parameter Ionization Cross Section Inelastic Collision Atomic Collision Large Versus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. R. C. McDowell and J. P. Coleman, Introduction to the Theory of Ion-Atom Collisions (North-Holland, Amsterdam, 1970). See Chapter 3.Google Scholar
  2. 2.
    F. Hopkins, in Methods of Experimental Physics: Atomic Physics-Accelerators (Academic, New York, 1980) edited by P. Richard, Vol. 17, p.335. See in particular Ch. 8.3 and references therein.Google Scholar
  3. 3.
    R. L. Kauffman, J. H. McGuire, P. Richard, and C.F. Moore, Phys. Rev. A 8, 1233 (1973). The projectile-target combinations, for which the PL(0) data are analyzed in our work, are identified by the atomic numbers Z1 and Z2 and listed using [Z1:Z2] format. In this particular reference, they were [1:20,21,22,23,24,25; 2:20,21,22,23,24,25; 8:20,21,22,24,25; 9:10].Google Scholar
  4. 4.
    T. K. Li, R. L. Watson, and J. S. Hansen, Phys. Rev. A 8, 1258 (1973); T. K. Li, Ph.D. Thesis, Texas A & M University, unpublished, (1973), [1:20,22,26; 2:20,22,26; 6:22]. Note that the Z1 = 1 projectiles of this reference were deuterons.Google Scholar
  5. 5.
    P. Richard, R. L. Kauffman, J. H. McGuire, C. F. Moore, and D. K. Olsen, Phys. Rev. A 8, 1369 (1973), [2:13].Google Scholar
  6. 6.
    R. L. Kauffman, D. Hopkins, C. W. Woods, and P. Richard, Phys. Rev. Lett. 31, 621 (1973), [8:10; 9:10,13].Google Scholar
  7. 7.
    B. Hodge, R. Kauffman, C. F. Moore, and P. Richard, J. Phys. B 6, 2468 (1973), [1:21,22; 2:21].Google Scholar
  8. 8.
    F. Hopkins, D. O. Elliott, C. P. Bhalla, and P. Richard, Phys. Rev. A 8, 2952 (1973), [8:13; 9:13].Google Scholar
  9. 9.
    D. L. Matthews, B. M. Johnson, L. E. Smith, J. J. Mackey, and C. F. Moore, Phys. Lett. 48A, 93 (1974), [1:10; 8:10].Google Scholar
  10. 10.
    D. L. Matthews, B. M. Johnson, and C. F. Moore, Phys. Rev. A 10, 451 (1974), [8:10].Google Scholar
  11. 11.
    R. L. Kauffman, C. W. Woods, K. A. Jamison, and P. Richard, J. Phys. B 7, L335 (1974), [6:10; 7:10].Google Scholar
  12. 12.
    R. L. Watson, F. E. Jenson, and T. Chiao, Phys. Rev. A 10, 1230 (1974), [1:13; 2:19; 6:17; 8:19;10:13,17,19; 16:17,19; 17:18; 18:19].Google Scholar
  13. 13.
    R. L. Kauffman, C. Woods, K. A. Jamison, and P. Richard, Phys. Rev. A 11, 872 (1975) [6:10; 7:10; 8:10].Google Scholar
  14. 14.
    V. Dutkiewicz, H. Bakhru, and N. Cue, Phys. Rev. A 13, 306 (1976), [1:13,14,15,16,17,18,20,21,22,23,24,25].Google Scholar
  15. 15.
    K. W. Hill, B. L. Doyle, S. M. Shafroth, D. H. Madison, and R. D. Deslattes, Phys. Rev. A 13, 1334 (1976), [2:22;3:22;6:22;8:22].Google Scholar
  16. 16.
    C. Schmiedekamp, B. L. Doyle, T. J. Gray, K. A. Jamison, and P. Richard, Phys. Rev. A 18, 1892 (1978), [1:18; 6:18,19; 7:18; 8:18; 9:18; 14:18; 17:18].Google Scholar
  17. 17.
    R. L. Watson, B. I. Sonobe, J. A. Damarest, and A. Langenberg, Phys. Rev. A 19, 1529 (1979), [2:13,14,17,18,22; 6:13,14; 8:13,14; 10:13,14].Google Scholar
  18. 18.
    R. L. Watson, O. Benka, K. Parthasaradhi, R. J. Maurer, and J. M. Sanders, J. Phys. B 16, 835 (1983), [2:10;6:10].Google Scholar
  19. 19.
    I. Kádár, S. Ricz, V. A. Shchegolev, B. Sulik, D. Varga, J. Végh, D. Berényi, and G. Hock, J. Phys. B 18, 275 (1985), [10:10].Google Scholar
  20. 20.
    J. H. McGuire and P. Richard, Phys. Rev. A 8, 1374 (1973).Google Scholar
  21. 21.
    N. Bohr, K. Dansk. Vidensk. Selsk. Mat.-Fys. Medd. 18, 8 (1948).Google Scholar
  22. 22.
    N. F. Mott and H. S. W. Massey, The Theory of Atomic Collisions, 3rd Edition (Clarendon, Oxford, 1965). See Chapters II.6 and XII.1.Google Scholar
  23. 23.
    J. M. Hansteen, O. M. Johansen, and L. Kocbach, At. Data and Nucl. Data Tables 15, 305 (1975).Google Scholar
  24. 24.
    E. Gerjuoy, Phys. Rev. 148, 54 (1966); L. Vriens, Proc. R. Soc. Lond. 90, 935 (1966); J. D. Garcia, E. Gerjuoy, and J. Wekler, Phys. Rev. 165, 66(1968); J. D. Garcia, Phys. Rev. A 1, 280 (1970) and A 4, 955 (1971).Google Scholar
  25. 25.
    In the evaluation of V = V1/V2Lθ2L½ or V = v1/v2Lθ2L there is a certain ambiguity in choosing a θ2L that represents each L-shell electron on the average. Using θL1, θL2, and θL3 from the Z2 = 10–25 range, we have searched for an optimal definition of θ2L that would make PL(0,θ2L) equal to [ P2s(0, θL1) + P2p (0, θL2) + 2 P2p (0, θL3) ] / 4 as closely as possible. We have found — comparing P2s(0) and P2p(0) formulas of J. S. Hansen, Phys. Rev. A 8, 822 (1973) vis-a-vis PL(0) of Ref. 24 — θ2L = (θL1θL2θL3θL3)¼ to be the optimal choice.Google Scholar
  26. 26.
    J. J. Thomson, Phil. Mag. 23, 449 (1912).Google Scholar
  27. 27.
    G. Lapicki, R. Mehta, J. L. Duggan, P. M. Kocur, J. L. Price, and F. D. McDaniel, Phys. Rev. A 34, 3813 (1986).Google Scholar
  28. 28.
    M. Gryziński, Phys. Rev. 138, A304 (1965).Google Scholar
  29. 29.
    M. Gryziński, Phys. Rev. 138, A322 (1965).Google Scholar
  30. 30.
    M. Gryziński, Phys. Rev. 138, A138 (1965).Google Scholar
  31. 31.
    B. Podolsky and L. Pauling, Phys. Rev. 34, 109 (1929); V. Fock, Z. Phys. 98, 145 (1935).Google Scholar
  32. 32.
    L. P. Pitaevskii, Sov. Phys.-JETP 15, 919 (1962); R. A. Mapleton, Proc. Rey. Soc. 89, 23 (1966).See also Appendix 3.1 of Ref. 1.Google Scholar
  33. 33.
    V. M. Dubner and N. V. Komarovskaya, in Abstracts of the Vth International Conference on the Physics of Electronic and Atomic Collisions, Leningrad, 1967 edited by I. P. Flaks and V. S. Solovyov (Nauka, Leningrad, 1967), p. 659; A. Burgess and I. C. Percival, in Advances in Atomic and Molecular Physics, edited by D. R. Bates and I. Estermann (Academic, New York, 1968), Vol. 4, p.109.Google Scholar
  34. 34.
    R. L. Becker, A. L. Ford, J. F. Reading, Nucl. Instr. Meth. 214, 49 (1983).Google Scholar
  35. 35.
    J. S. Cohen, J. Phys. B 18, 1759 (1985).Google Scholar
  36. 36.
    M. Gryziński and J. A. Kunc, J. Phys. B 19, 2479 (1986).Google Scholar
  37. 37.
    M. Gryziński, J. Physique 43, L425 (1982).Google Scholar
  38. 38.
    W. Brandt and G. Lapicki, Phys. Rev. A 20, 465 (1979). See Eq. (20).Google Scholar
  39. 39.
    R. Abrines and I. C. Percival, Proc. Phys. Soc. 88, 861 and 873 (1966); R. Abrines, I. C. Percival and N. A. Valentine, Proc. Phys. Soc. 89, 515.Google Scholar
  40. 40.
    M. Gryzinski, J. A. Kunc, and M. Zgorzelski, S. Phys. B 6, 2292 (1973).Google Scholar
  41. 41.
    R. L. Becker, A. L. Ford, and J. F. Reading, Phys. Rev. A 29, 3111 (1984).Google Scholar
  42. 42.
    W. Brandt and G. Lapicki, Phys. Rev. A 23, 1717 (1981).Google Scholar
  43. 43.
    W. Brandt, in Atomic Collision in Solids edited by S. Datz, B. R. Appleton, and C. D. Moak (Plenum, New York, 1973) Vol. 1, p. 261.Google Scholar
  44. 44.
    D. R. Bates and G. W. Griffing, Proc. Phys. Soc. A 68, 90 (1955); W. Losonsky, Phys. Rev. A 16, 1312 (1977); J. S. Briggs and K. Taulbjerg, in Topics in Current Physics, edited by I. A. Sellin (Springer, Berlin, 1978), Vol. 5, p.105; S. T. Manson and L. H. Toburen, Phys. Rev. Lett. 46, 529 (1981); L. H. Toburen, N. Stolterfoht, P. Ziem, and D. Schneider, Phys. Rev. A 24, 1741 (1981)Google Scholar
  45. 45.
    D. Schneider, M. Prost, B. DuBois, and N. Stolterfoht, Phys. Rev. A 25, 3102 (1982).Google Scholar
  46. 46.
    B. Sulik, G. Hock, and D. Berényi, J. Phys. 17, 3239 (1984).Google Scholar
  47. 47.
    L. Vegh, Phys. Rev. A 32, 199 (1985).Google Scholar
  48. 48.
    Eq.(1a) of Ref.46, b(ΔE) = Z1[(2v12 − Δ E)/ΔE]½/v12, converts to σ = πb2 that is identical with Thomson's cross section of Eq. (8) after evaluation at ΔEmin = v2L2 θ2L/2. By the selection of θ2L = 1 (hydrogenic wavefunctions), the authors arrive at the most restrictive scaling of PL(0) i.e., with Z1/V1 only. This scaling is derived for all Z1/v1 because from the outset thcu-off impact parameter bC = (Z1/v1)a2L(1−1/4V2) is approximated in Eq.(lb) by (Z1/v1)a2L; the approximation requires V ≫ 1.Google Scholar
  49. 49.
    M. Gryziński, Phys. Rev. 107, 1471 (1957).Google Scholar
  50. 50.
    M. Gryziński, Phys. Rev. 115, 374 (1959).Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • G. Lapicki
    • 1
  1. 1.Department of PhysicsEast Carolina UniversityGreenvilleUSA

Personalised recommendations