Advertisement

Heating of stellar chromospheres and coronae: Evidence for non-magnetic heating

  • C. J. Schrijver
Heating of Stellar Chromospheres and Coronae
Part of the Lecture Notes in Physics book series (LNP, volume 291)

Abstract

A detailed analysis of the radiative losses from the outer atmospheres of magnetically active stars suggests that two emission components are present. These two components may correspond to two distinct mechanisms of non-radiative heating that operate in the outer atmospheres of cool stars. One of these mechanisms depends on the stellar rotation rate, and is associated with stellar magnetic activity. The other component varies with stellar effective temperature, appears to be insensitive to surface gravity, and independent of the stellar rotation rate. The radiative energy loss of this second component results in the observed lower boundaries in diagrams of flux density versus colour, hence the name “basal chromosphere.” The associated heating mechanism may be dissipation of acoustic waves. The temperatures of the basal part of the atmosphere are limited to a few tens of thousands of degrees or less in G- and K-type stars. The basal atmosphere in F-type dwarfs may reach up to transition-region temperatures, or higher.

Keywords

Flux Density Luminosity Class Basal Flux International Ultraviolet Explorer Stellar Chromosphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ayres, T.R., Marstad, N.C., Linsky, J.L.: 1981, Astrophys. J. 247, 545.Google Scholar
  2. Basri, G.: 1987, Astrophys. J. 316, 377.Google Scholar
  3. Bohn, U.H.: 1984, Astron. Astrophys. 136, 338.Google Scholar
  4. Doherty, L.R.: 1985, Mon. Not. Royal Astron. Soc. 217, 41.Google Scholar
  5. Jordan, C.: 1969, Astrophys. J. 156, 49.Google Scholar
  6. Jordan, C., Ayres, T.R., Brown, A., Linsky, J.L., Simon, T.: 1987, Mon. Not. Royal Astron. Soc. 225, 903.Google Scholar
  7. Lemmens, A.F.P., Rutten, R.G.M.: 1987, in preparation.Google Scholar
  8. Noyes, R.W., Hartmann, L., Baliunas, S.L., Duncan, D.K., Vaughan, A.H.: 1984, Astrophys. J. 279, 763.Google Scholar
  9. Oranje, B.J.: 1986, Astron. Astrophys. 154, 185.Google Scholar
  10. Oranje, B.J., Zwaan, C.: 1985, Astron. Astrophys. 147, 265.Google Scholar
  11. Oranje, B.J., Zwaan, C., Middelkoop, F.: 1982, Astron: Astrophys. 110, 30.Google Scholar
  12. Rutten, R.G.M.: 1986, Astron. Astrophys. 160, 291.Google Scholar
  13. Rutten R.G.M., Schrijver, C.J.: 1987, Astron. Astrophys., in press.Google Scholar
  14. Schrijver, C.J.: 1983, Astron. Astrophys. 127, 289.Google Scholar
  15. Schrijver, C.J.: 1987, Astron. Astrophys. 172, 111.Google Scholar
  16. Schrijver, C.J., Coté, J.: 1987, this volume.Google Scholar
  17. Schrijver, C.J., Coté, J., Zwaan, C., Saar, S.H.: 1987, in preparation.Google Scholar
  18. Schrijver, C.J., Zwaan, C., Maxson, C.W., Noyes, R.W.: 1984, Astron. Astrophys. 149, 123.Google Scholar
  19. Spruit, H.C., Title, A., van Ballegooyen, A.: 1987, in press.Google Scholar
  20. Topka, K.P., Avni, Y., Golub, L., Gorenstein, P., Harnden, F.R. Jr., Rosner, R., Vaiana, G.S.: 1982, Astrophys. J. 259, 677.Google Scholar
  21. Ulmschneider, P.: 1979, Space Science Rev., 24, 71.Google Scholar
  22. Vaughan, A.H., Preston, G.W., Wilson, D.C.: 1978, Publ. Astron. Soc. Pacif. 90, 267.Google Scholar
  23. Vernazza, J.E., Avrett, E.H., Loeser, R.: 1981, Astrophys. J. Suppl. 45, 635.Google Scholar
  24. Walter, R.M., Schrijver, C.J.: 1987, this volume.Google Scholar
  25. Withbroe, G.L., Mariska, J.T.: 1976, Solar Phys. 48, 21.Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • C. J. Schrijver
    • 1
  1. 1.Joint Institute for Laboratory AstrophysicsUniversity of Colorado and National Bureau of StandardsBoulderUSA

Personalised recommendations