Magnetic flux tubes as sources of wave generation

  • Z. E. Musielak
  • R. Rosner
  • P. Ulmschneider
General Discussion: The Role of Magnetic Fields
Part of the Lecture Notes in Physics book series (LNP, volume 291)


Because solar (and, most likely, stellar) surface magnetic fields are highly inhomogeneous, and show concentration into ‘flux tube’ structures, the wave energy generated in stellar convection zones may be largely carried away by flux tube waves, which then become important sources for the heating of the outer atmospheric layers. We report calculations for longitudinal tube waves generated in magnetic flux tubes embedded in an otherwise magnetic field-free, turbulent, and stratified medium; we find that such waves are generated by dipole emission, and that the generation efficiency is a strong function of the magnetic field strength. We also present wave flux calculations for magnetic flux tubes embedded in the solar convective zone; the main result is that the longitudinal tube wave fluxes are at least 2 orders of magnitude too low to play a significant role in the heating of the solar chromosphere.


Magnetic Field Strength Flux Tube Magnetic Flux Tube Tube Wave Stratify Medium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Biermann, L. 1946, Naturwiss., 33, 188.Google Scholar
  2. Bohn, H. U. 1984, Astron. Ap., 136, 338.Google Scholar
  3. Defouw, R. J. 1976, Ap. J., 209, 266.Google Scholar
  4. Harvey, J. W. 1977, Highlights of Astronomy, 4, 223.Google Scholar
  5. Herbold, G., Ulmschneider, P., Spruit, H. C., and Rosner, R. 1985, Astron. Ap., 145, 157.Google Scholar
  6. Kulsrud, R. M. 1955, Ap. J., 121, 461.Google Scholar
  7. Lighthill, M. J. 1952, Proc. Roy. Soc. London, A211, 564.Google Scholar
  8. Linsky, J. L. 1981, in X-ray Astronomy in the 1980's, ed. S. S. Holt (NASA TM-83848), p. 13.Google Scholar
  9. Musielak, Z. E., and Rosner, R. 1987a, Ap. J., 315, in press.Google Scholar
  10. Musielak, Z. E., and Rosner, R. 1987b, Ap. J., submitted.Google Scholar
  11. Musielak, Z. E., Rosner, R., and Ulmschneider, P. 1987, Ap. J., submitted.Google Scholar
  12. Parker, E. N. 1964, Ap. J., 140, 1170.Google Scholar
  13. Renzini, A., Cacciari, C., Ulmschneider, P., and Schmitz, F. 1982, Astron. Ap., 61, 39.Google Scholar
  14. Robinson, R. D., Worden, S. P., and Harvey, J. W. 1980, Ap. J., 239, 961.Google Scholar
  15. Rosner, R., Golub, L., and Vaiana, G. S. 1985, Ann. Rev. Astron. Ap., 23, 413.Google Scholar
  16. Solanki, S. K. and Stenflo, J. O. 1985, Astron. Ap., 140, 185.Google Scholar
  17. Stein, R. F. 1967, Solar Phys., 2, 385.Google Scholar
  18. Stein, R. F. 1981, Ap. J., 246, 966.Google Scholar
  19. Stenflo, J. O. 1978, Rep. Prog. Phys., 41, 865.Google Scholar
  20. Spruit, H. C., and Roberts, B. 1983, Nature, 304, 401.Google Scholar
  21. Ulmschneider, P., and Bohn, H. U. 1981, Astron. Ap., 99, 173.Google Scholar
  22. Ulmschneider, P., and Stein, R. F. 1982, Astron. Ap., 106, 9.Google Scholar
  23. Vaiana, G. S., et al. 1981, Ap. J., 245, 163.Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Z. E. Musielak
    • 1
  • R. Rosner
    • 2
  • P. Ulmschneider
    • 3
  1. 1.Space Science LaboratoryNASA Marshall Space Flight CenterUSA
  2. 2.Harvard-Smithsonian Center for AstrophysicsUSA
  3. 3.Institut fuer Theoretische AstrophysikUniversity of HeidelbergGermany

Personalised recommendations