An algorithm for colouring perfect planar graphs

  • Iain A. Stewart
Session 2 Graph Algorithms & Geometric Algorithms
Part of the Lecture Notes in Computer Science book series (LNCS, volume 287)


We present an algorithm to properly colour a perfect, planar graph G using λ(G) colours. This algorithm has time complexity O(n3/2) and is recursive, based on the Lipton-Tarjan Separator Algorithm.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. BERGE, Sur une conjecture relative au problème des codes optimaux, Comm. 13ieme Assemblee Gen. URSI, Tokyo, 1962.Google Scholar
  2. 2.
    H. N. DJIDJEV, On the problem of partitioning planar graphs, SIAM J. Algebraic Discrete Methods 3 (1982), 229–240.Google Scholar
  3. 3.
    M. GOLUMBIC, "Algorithmic Graph Theory and Perfect Graphs", Academic Press, New York, 1980.Google Scholar
  4. 4.
    C. GRINSTEAD, "Toroidal Graphs and the Strong Perfect Graph Conjecture", Ph.D Thesis, UCLA, 1978.Google Scholar
  5. 5.
    M. GAREY, D. JOHNSON AND L. STOCKMEYER, Some simplified NP-complete graph problems, Theoretical Computer Science 1 (1976), 237–267.CrossRefGoogle Scholar
  6. 6.
    W. HSU, "How to Colour Claw-Free Perfect Graphs", Tech. Report #435, Cornell School of Operations Research and Industrial Eng., 1979.Google Scholar
  7. 7.
    R. LIPTON AND R. E. TARJAN, A separator theorem for planar graphs, SIAM J. Appl. Math. 36 (1979), 177–189.CrossRefGoogle Scholar
  8. 8.
    G. L. MILLER, Finding small simple cycle separators for 2-connected planar graphs, Sixteenth Symp. Theory of Comp. 1984, 376–382.Google Scholar
  9. 9.
    K. PARTHASARATHY AND G. RAVINDRA, The strong perfect graph conjecture is true for K1–3-free graphs, J. Combinatorial Theory Ser. B 21 (1976), 212–223.Google Scholar
  10. 10.
    A. TUCKER, Perfect graphs and an application to optimizing municipal services, SIAM Rev. 15 (1973), 585–590.CrossRefGoogle Scholar
  11. 11.
    A. TUCKER, The strong perfect graph conjecture for planar graphs, Canad. J. Math. 25 (1973), 103–114.Google Scholar
  12. 12.
    A. TUCKER, Critical perfect graphs and perfect 3-chromatic graphs, J. Combinatorial Theory Ser. B 23 (1977), 143–149.CrossRefGoogle Scholar
  13. 13.
    A. TUCKER AND D. WILSON, An O(N2) algorithm for colouring perfect planar graphs, Journal of Algorithms 5 (1984), 60–68.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • Iain A. Stewart
    • 1
  1. 1.Computing LaboratoryUniversity of Newcastle Upon TyneNewcastle Upon TyneEngland

Personalised recommendations