Information gain with preference

  • P. Gomel
Section IV Information Theoretic Approach
Part of the Lecture Notes in Computer Science book series (LNCS, volume 286)


Probability Distribution Information Gain Normalize Gain Positive Distribution Convexity Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Aczel, Z. Daroczy: "A mixed theory of information" Rev. fr. autom. Inf. R.O 12, 1978.Google Scholar
  2. 2.
    N.L. Aggarwal, C.F. Picard: "Functional equations and information measures with preference. Colloquium "Funktional gleichungen", Oberwolfach, 1977.Google Scholar
  3. 3.
    M. Belis, S.Giuasu: "A quantitative-qualitative measure of information in cybernetics systems." IEEE Trans. Inf. Th. 14, 1968.Google Scholar
  4. 4.
    B. Bouchon: "Useful information and questionnaires". Inf. Cont. 32, 1976.Google Scholar
  5. 5.
    Gil Alvarez: "Estudio de una medido para la incertidumbre a las utilidades", Tra. Esta. Inu. Ope. vol 32 no3, 1981.Google Scholar
  6. 6.
    C.F. Picard: "Mesures d'information avec préférence ne possédant pas la propriété de branchement". Colloque C.N.R.S. Théorie de l'information, développements récents et applications, Cachan, 1977, Editions du C.N.R.S.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • P. Gomel
    • 1
  1. 1.LAFORIA, CNRSParis

Personalised recommendations